Pressure-temperature stability studies of FeOOH using X-ray diffraction

A.E. GLEASON,^{1,*} R. JEANLOZ,¹ AND M. KUNZ²

¹Department of Earth and Planetary Science, University of California, Berkeley, McCone Hall 4767, Berkeley, California 94720, U.S.A. ²Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, U.S.A.

ABSTRACT

The Mie-Grüneisen formalism is used to fit a Birch-Murnaghan equation of state to high-temperature (*T*), high-pressure (*P*) X-ray diffraction unit-cell volume (*V*) measurements on synthetic goethite (α -FeOOH) to combined conditions of T = 23-250 °C and P = 0-29.4 GPa. We find the zero-pressure thermal expansion coefficient of goethite to be $\alpha_0 = 2.3$ (± 0.6) × 10⁻⁵ K⁻¹ over this temperature range. Our data yield zero-pressure compressional parameters: $V_0 = 138.75$ (± 0.02) Å³, bulk modulus $K_0 = 140.3$ (± 3.7) GPa, pressure derivative $K'_0 = 4.6$ (± 0.4), Grüneisen parameter $\gamma_0 = 0.91$ (± 0.07), and Debye temperature $\Theta_0 = 740$ (± 5) K. We identify decomposition conditions for 2α -FeOOH $\rightarrow \alpha$ -Fe₂O₃ + H₂O at 1–8 GPa and 100–400 °C, and the polymorphic transition from α -FeOOH (*Pbnm*) to ε -FeOOH ($P2_1mn$). The non-quenchable, high-pressure ε -FeOOH phase *P*-*V* data are fitted to a second-order (Birch) equation of state yielding, $K_0 = 158$ (± 5) GPa and $V_0 = 66.3$ (± 0.5) Å³.

Keywords: Goethite, XRD data, diamond-anvil cell, compressibility measuresments