Jahnsite-(NaFeMg), a new mineral from the Tip Top mine, Custer County, South Dakota: Description and crystal structure

ANTHONY R. KAMPF,^{1,*} IAN M. STEELE,² AND THOMAS A. LOOMIS³

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, Califoria 90007, U.S.A.

²Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.

³P.O. Box 415, Rapid City, South Dakota 57709, U.S.A.

ABSTRACT

Jahnsite-(NaFeMg), NaFe³⁺Mg₂Fe³⁺(PO₄)₄(OH)₂·8H₂O, space group P2/a, a = 15.0811(16), b =7.1403(8), c = 9.8299(11) Å, $\beta = 110.445(1)^{\circ}$, V = 991.8(2) Å³, and Z = 2, is a new mineral from the Tip Top mine, Custer County, South Dakota. It occurs as the dominant chemical zone in transparent pseudo-orthorhombic twinned prisms up to 1 mm long with shallow wedge-like terminations, both as isolated twinned crystals and in subparallel to divergent intergrowths. The crystals are yellow with orange-red bands just below the terminations. The mineral has a white streak, vitreous luster, Mohs hardness of 4, and good {001} cleavage. The measured density is 2.58(2) g/cm³, and the calculated density is 2.608 g/cm³. It is optically biaxial (-), with $\alpha = 1.632(1), \beta = 1.669(1), \gamma = 1.671(1)$ (589 nm); 2V (meas.) = 25(5)°, 2V (calc.) = 26°; dispersion: r > v, very strong; orientation: Y = b, $Z \land a = +28°$ (in β obtuse); pleochroism: X = colorless, Y and Z = beige; Y = Z > X. Electron microprobe analyses provided: Na₂O 2.82, CaO 0.34, MnO 0.32, MgO 10.27, Fe₂O₃ 27.35, P₂O₅ 35.93, H₂O 21.58 (calc.), total 98.61, which in terms of the general formula for the white ite-jahnsite group $XM1M2_2M3_2(PO_4)_4$ $(OH)_2 \cdot 8H_2O$, yields the empirical formula: $(Na_{0.72}Ca_{0.05}Mn_{0.04}^{2+})(Fe_{0.72}^{3+}Mg_{0.01})Mg_{2.00}Fe_{2.00}^{3+}(PO_{3.77}OH_{0.23})_4$ $(OH)_2 \cdot 8H_2O$. Crystal structure refinement ($R_1 = 0.041$) supports these cation site assignments. Typical crystals have as many as five chemical zones from base to termination corresponding to the following jahnsite species: jahnsite-(NaMnMg), jahnsite-(NaFeMg), jahnsite-(CaMnMg), jahnsite-(NaFeMg), jahnsite-(CaMgMg). The characterization of the new mineral jahnsite-(NaFeMg) is based upon the second zone listed, which corresponds to roughly 80% of the crystal volume. Jahnsite-(NaMnMg) and jahnsite-(CaMgMg) also represent new species; however, the very small volume of these zones is insufficient to permit complete characterization of these species. Jahnsite-(NaFeMg) is the first member of the whiteite-jahnsite group in which a monovalent cation (Na⁺) predominantly occupies the X site and a trivalent cation (Fe^{3+}) the M1 site. The structure differs from that determined for jahnsite-(CaMnMg) in that the X site is [8]-coordinated and the M1 and P1 polyhedra exhibit greater distortions caused by cation-cation repulsion across their shared edges. The determination of H positions allows the elucidation of a definitive H-bonding scheme.

Keywords: Jahnsite, Tip Top mine, new mineral, crystal structure, whiteite-jahnsite group, crystal chemistry, pegmatite phosphate