American Mineralogist, Volume 93, pages 1066–1071, 2008

Multiple oxygen sites in synthetic phyllosilicates with expandable layers: ¹⁷O solid-state NMR study

SUNG KEUN LEE^{1,*} AND CHARLES A. WEISS JR.²

¹School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea ²U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, U.S.A.

ABSTRACT

Recent advances in high-resolution solid-state NMR enabled us to resolve the previously unknown details of atomic configurations around quadrupolar nuclides such as O (¹⁷O, spin 5/2) and aluminum (²⁷Al, spin 5/2) in phyllosilicates. Here, we report the ¹⁷O 1D and 2D NMR (MAS and MQMAS) spectra of synthetic kaolinite-montmorillonite mixtures. Various O sites in the mixtures revealed from O-17 NMR include apical O (^{V1}Si-O-2^{IV}Al), multiple basal O atoms (^{V1}Si-O-^{V1}Si and two ^{V1}Si-O^{-V1}Al sites) in tetrahedral layers, and hydroxyl group with distinct ranges for NMR parameters (quadrupolar coupling constant, C_q and isotropic chemical shift, ¹⁷O δ_{iso}). In particular, the structurally relevant NMR parameters (¹⁷O δ_{iso} , C_q, and asymmetry parameter, η) for two resolved ^{IV}Si-O-^{V1}Al sites are about 52 ± 2 ppm, 2.6 ± 0.2 MHz, and 0.5 for ^{IV}Si-O-^{IV}Al (I) and about 44.5 ± 2 ppm, and 3.1 ± 0.2 MHz, and 0.5 for ^{IV}Si-O-^{IV}Al bond angle or ^{IV}Al-O-2^{V1}Al site in the montmorillonite.

Keywords: High-resolution solid-state NMR, phyllosilicates, oxygen sites, 3QMAS NMR, montmorillonite