American Mineralogist, Volume 93, pages 235-240, 2008

The origin of S⁴⁺ detected in silicate glasses by XANES

MAX WILKE,^{1,*} PEDRO J. JUGO,^{2,3} KEVIN KLIMM,⁴ JEAN SUSINI,⁵ ROMAN BOTCHARNIKOV,⁶ SIMON C. KOHN,³ AND MARKUS JANOUSCH⁷

¹Institut für Geowissenschaften, Universitaet Potsdam, Karl-Liebknecht-Str. 24, 14476 Golm, Germany
²Department of Earth Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
³Institut für Geowissenschaften, Johann Wolfgang Goethe Universität, Altenhöferalle 1, 60438 Frankfurt, Germany
⁴Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ, U.K.
⁵European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble CEDEX, France
⁶Institut für Mineralogie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover, Germany
⁷Paul Scherrer Institut, Swiss Light Source, 5232 Villigen-PSI, Switzerland

ABSTRACT

The origin of sulfite (S^{4+}) species in silicate glasses was evaluated using XANES at the S *K*-edge. Systematic investigations show that the presence of S^{4+} species in silicate glasses is an analytical artifact related to changes in the sulfur species caused by irradiation with an electron beam during EMPA or by irradiation with an intense focused X-ray beam during synchrotron analysis. The data shown here indicate that S^{2-} and S^{6+} are the only significant sulfur species occurring in silicate glasses synthesized under geologically relevant conditions.

Keywords: XAS (XAFS, XANES), sulfur *K*-edge, glass properties, sulfur oxidation state, beam damage, sulfur speciation