Single-crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy)

MARIO TRIBAUDINO,^{1,*} ANDREA ARTONI,¹ CHRISTIAN MAVRIS,¹ DANILO BERSANI,² PIER PAOLO LOTTICI,² AND DANIELE BELLETTI³

¹Dipartimento di Scienze della Terra, Università di Parma, Viale Usberti, 157/A, I-43100, Parma, Italy ²Dipartimento di Fisica, Università di Parma, Viale Usberti, 7/A, I-43100, Parma, Italy

³Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Viale Usberti, 17/A, I-43100, Parma,

Italy

ABSTRACT

The results of a new single-crystal structure refinement and of a Raman spectroscopy investigation on melanophlogite, a clathrate structure of SiO₂, are reported. The studied sample comes from a new finding at Varano Marchesi (Parma, Italy), and occurs in small veins and pockets along fractures in a siliceous marl from a chaotic complex. Melanophlogite is invariably separated from the host rock by a thin crust of opal-CT.

Raman spectroscopy was done to investigate the guest molecules that are hosted in the cages of the structure. In the Varano Marchesi melanophlogite, only CH_4 is present in the clathrate structure. During a comparative investigation of melanophlogite from different geological setting (Racalmuto, Sicily, Italy), H_2S also was found, together with CH_4 , in the cavities of the structure.

A single-crystal X-ray refinement of the Varano Marchesi sample was done using the $Pm\overline{3}n$ symmetry of β -melanophlogite [a = 13.399(2), $R_{4\sigma} = 4.7\%$]. According to the site refinement from X-ray diffraction results, CH₄ occupies 71 and 91% of the 5¹² and 5¹²6² site cavities, respectively.

The Varano Marchesi melanophlogite formed as a result of low-temperature hydrothermal activity. The mineral growth occurred at the expense of opal, in connection with CH_4 flux through the porous material.

Keywords: Melanophlogite, single-crystal X-ray diffraction, Raman spectroscopy, phase transition, CH4