American Mineralogist, Volume 93, pages 74-80, 2008

High-temperature deformation of volcanic materials in the presence of water

G. ROBERT,^{1,*} J.K. RUSSELL,¹ D. GIORDANO,² AND C. ROMANO²

¹Volcanology and Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

²Department of Geological Sciences, Third University of Rome, Rome, Italy

ABSTRACT

We describe an experimental apparatus used to perform deformation experiments relevant to the volcanological sciences. The apparatus supports low-load, high-temperature deformation experiments under dry and wet conditions on natural and synthetic samples. The experiments recover the transient rheology of complex (melt \pm porosity \pm solids) volcanic materials during uniaxial deformation. The key component to this apparatus is a steel cell designed for high-temperature deformation experiments under controlled water pressure. Experiments are run under constant displacement rates or constant loads; the range of accessible experimental conditions include: 25-1100 °C, load stresses 0 to 150 MPa, strain rates 10⁻⁶ to 10⁻² 1/s, and fluid pressures 0–150 MPa. The apparatus is calibrated against standard values of viscosity using constant-load experiments on cores of NIST (NBS) 717a borosilicate glass. We also report results of constant-displacement rate ($\sim 10^{-6}$ m/s) experiments on porous ($\sim 70\%$) sintered cores of ash from the Rattlesnake Tuff. The cores of volcanic ash were deformed in experiments under ambient ("dry") and elevated water pressures ("wet"). Dry experiments at ~870 °C show an increase in effective viscosity ($10^{9.5}$ to $10^{10.4}$ Pa·s) with increasing strain (~30%) due to porosity reduction during compaction. Experiments under ~1–3 MPa $P_{\rm H_{2}O}$ recover lower values of apparent viscosity (10^{9.2} to $10^{9.4}$ Pa s) despite being run at lower temperatures (640–665 °C). The wet experiments also do not show a rise in viscosity with increased strain (decreasing porosity) as observed in dry experiments. Rather, the presence of an H₂O fluid phase expands the window of viscous deformation and delays the onset of strain hardening that normally accompanies porosity reduction.

Keywords: Experimental-apparatus, deformation, volcanic, rheology, high-temperature, hydrous, porosity