Ion exchange equilibrium and structural changes in clinoptilolite irradiated with β- and γ-radiation: Monovalent cations

DANIEL MORAETIS,* GEORGE E. CHRISTIDIS, AND VASILIOS PERDIKATSIS

Department of Mineral Resources Engineering, Technical University of Crete, 73100, Chania, Greece

ABSTRACT

Thermodynamic calculations of ion-exchange reactions were applied for clinoptilolite in a natural state and after irradiation with three doses of β -radiation (10¹², 10¹⁵, 3 × 10¹⁶ e/cm²) and γ -radiation (70 Mrad). Samples were equilibrated with binary systems of $K^+ \leftrightarrow Na^+$ and $Cs^+ \leftrightarrow Na^+$ at 25° and a total normality of 0.025 N. Selectivity for K was not affected after β -radiation with doses of 10¹² and 10^{15} e/cm² ($\Delta G^{\circ} = -6.37$ kJ/equiv, lnK $\alpha = 2.58$ for the original clinoptilolite), whereas it increased considerably after 70 Mrad of γ -radiation ($\Delta G^{\circ} = -7.88$ kJ/equiv, lnK $\alpha = 3.18$). Selectivity for Cs⁺ increased for the clinoptilolite irradiated with β -radiation (10¹², 10¹⁵, 3 × 10¹⁶ e/cm²) and γ -radiation (70 Mrad). ΔG° and $\ln K \alpha$ for original sample and Cs⁺ \leftrightarrow Na⁺ were -7.33 kJ/equiv and 2.96, respectively. Irradiated samples with β -radiation 10¹², 10¹⁵, 3 × 10¹⁶ e/cm² and 70 Mrad γ -radiation yielded ΔG° and $\ln K\alpha - 7.41, -8.83, -8.60, -8.25$ kJ/equiv and 2.99, 3.57, 3.47, 3.33 for Cs⁺ \leftrightarrow Na⁺, respectively. Remarkable amorphization of clinoptilolite was observed after exposure at the highest dose of β -radiation (3 × 10¹⁶ e/cm²) with a concomitant decrease in cation-exchange capacity (CEC). Crystallographic parameters and especially exchangeable cation site coordinates were refined for all samples with the Rietveld method. Cesium-saturated samples exhibited changes in the cation sites Cs2 and Cs3, which are next to clinoptilolite channel walls with lower Al^{3+} for Si^{4+} substitution. The observed changes include a shift in cation sites Cs2 and Cs3 toward channel walls and occupancy decrease in site Cs2.

Keywords: Clinoptilolite, ion exchange, β -radiation, γ -radiation, thermodynamics, Rietveld refinement