FTIR spectroscopy of Ti-rich pargasites from Lherz and the detection of O²⁻ at the anionic O3 site in amphiboles

GIANCARLO DELLA VENTURA,^{1,2,*} ROBERTA OBERTI,² FRANK C. HAWTHORNE,³ AND FABIO BELLATRECCIA¹

¹Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy ²CNR-Istituto di Geoscienze e Georisorse, Unità di Pavia, via Ferrata 1, I-27100 Pavia, Italy ³Department of Geological Sciences, University of Manitoba, Winnipeg, R3T 2N2 Canada

ABSTRACT

This paper reports a single-crystal unpolarized-light FTIR study in the OH-stretching region of a suite of well-characterized Ti-rich pargasites from Lherz (French Pyrenees). All amphiboles studied have fairly constant M-site composition, with ^[6]Al_{tot} ~0.55 atoms per formula unit (apfu), ^[6]Ti ~0.45 apfu, and ^[6]Fe³⁺ ~0.40 apfu. SIMS and SREF data show all samples to have an O3 anion composition of OH $\approx O^{2-} \approx 1.0$ apfu, with negligible F. The FTIR spectra show for all samples a broad absorption consisting of several overlapping bands; three main components can be recognized: ~3710, 3686, and 3660 cm⁻¹, respectively, with an asymmetric tail extending to lower frequency. Six Gaussian components can be fitted to the spectra; comparison with spectra of both synthetic and natural pargasites allows five of these components to be assigned to local configurations involving OH-O²⁻ at the O3 site, thus showing that coupling with an O²⁻ anion through an A-cation significantly affects band position. Infrared spectroscopy can detect the presence of O²⁻ in amphiboles in chemically favorable cases, i.e., in the absence of F. Moreover, the FTIR spectra show that all octahedral configurations involving ^{M1}Ti⁴⁺ or ^{M1}Fe³⁺ M³Fe³⁺ are associated with O²⁻ at both adjacent O3 sites, and that ^{M3}Al is locally associated with OH, confirming SRO models based on structure refinement results.

Keywords: Ti-rich pargasite, Lherz (French Pyrenees), single-crystal FTIR spectroscopy, anion occupancy