High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl₂O₄-Mg₂SiO₄

HIROSHI KOJITANI,* RYOSUKE HISATOMI, AND MASAKI AKAOGI

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

ABSTRACT

To map the stability field of calcium ferrite-type MgAl₂O₄–Mg₂SiO₄ solid solutions, high-pressure phase relations in the system MgAl₂O₄-Mg₂SiO₄ were studied in the compositional range of 0 to 50 mol% Mg₂SiO₄. The calcium ferrite solid solutions are stable above 23 GPa at 1600 °C, and the maximum solubility of Mg₂SiO₄ component in MgAl₂O₄ calcium ferrite is 34 mol%. Lattice parameters and unit-cell volume of calcium ferrite-type MgAl₂O₄ (space group *Pbnm*) determined by Rietveld analysis are *a* = 9.9498(6) Å, *b* = 8.6468(6) Å, *c* = 2.7901(2) Å, and *V* = 240.02(2) Å³. Lattice parameters for the MgAl₂O₄–Mg₂SiO₄ solid solutions with the compositions of 14, 24, and 34 mol% Mg₂SiO₄ indicated the following compositional dependency of lattice parameters: *a* (Å) = 9.9498 + 0.1947·X_{Mg₂SiO₄, *b* (Å) = 8.6468 – 0.1097·X_{Mg₂SiO₄, and *c* (Å) = 2.7901 + 0.0086·X_{Mg₂SiO₄, where X_{Mg₂SiO₄ is the mole fraction of Mg₂SiO₄ component. A linear extrapolation of the composition-molar volume relationship gave an estimated volume of 36.49(2) cm³/mol for the hypothetical calcium ferrite-type Mg₂SiO₄. This value is larger than that of the isochemical mixture of MgSiO₃ perovskite and MgO, 35.72(1) cm³/mol. This implies that the mixture of MgSiO₃ perovskite and MgO is more stable than the hypothetical calcium ferrite-type Mg₂SiO₄ under the lower mantle conditions.}}}}

Keywords: MgAl₂O₄, Mg₂SiO₄, calcium ferrite, high pressure, phase relation, Rietveld refinement