The high-pressure structural configurations of $Ca_{0.2}Sr_{0.8}Al_2Si_2O_8$ feldspar: The *I1-I2/c* and *I2/c-P2_1/c* phase transitions

PIERA BENNA,^{1,2,*} FABRIZIO NESTOLA,³ TIZIANA BOFFA BALLARAN,⁴ TONČI BALIĆ-ŽUNIĆ,⁵ LARS FAHL LUNDEGAARD,⁶ AND EMILIANO BRUNO¹

¹Dipartimento di Scienze Mineralogiche e Petrologiche, Via Valperga Caluso 35, I-10125 Torino, Italy
²Istituto di Geoscienze e Georisorse, CNR, Sezione di Torino, Italy
³Dipartimento di Mineralogia e Petrologia, Università di Padova, C.so Garibaldi 37, I-35137 Padova, Italy
⁴Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
⁵Geological Institute, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
⁶Centre for Science at Extreme Conditions, University of Edinburgh, Mayfield Road, Edinburgh EH93JZ, U.K.

ABSTRACT

Single-crystal in situ high-*P* X-ray diffraction was performed at P = 0.0001, 3.2, 4.4, 6.2, and 7.4 GPa on synthetic Ca_{0.2}Sr_{0.8}Al₂Si₂O₈ feldspar (An₂₀SrF₈₀). Data collections confirmed the displacive first-order triclinic $I\overline{I}$ -monoclinic I2/c phase transition at $P \sim 4.3$ GPa found in a previous high-*P* investigation and defined the first-order monoclinic-monoclinic transformation at $P \sim 7.3$ GPa as an $I2/c-P2_1/c$ symmetry change. The structural modifications induced by the increase of pressure inside the stability fields of $I\overline{I}$ and I2/c configurations as well as the structural behavior of the two phase transition observed for the same composition with increasing temperature and is related to the increase of the M-site coordination number, with the consequent regularization of Ca/Sr polyhedra and framework. Variations of the T-O-T bond angles are observed, whereas the O-T-O angles do not change significantly.

The $I2/c-P2_1/c$ transition involves a significant modification of the M-polyhedra. In the M(0)-polyhedron, the two O_C atoms, that were not coordinated in $I\overline{I}$ and I2/c space groups, are now bonded more strongly than either O_B or O_D atoms [the M(0)- $O_C(0i)$ and M(0)- $O_C(2i)$ distances are 2.54 and 2.57 Å, respectively], whereas in the M(i)-polyhedron, it is the second OA(20) oxygen that becomes coordinated and, at the same time, one of the bonds to O_D atoms is broken. Moreover, a significant deformation of the framework is obtained due to the decrease of the symmetry from the loss of the two-fold axis and of half of the centers of symmetry. The transition induces, besides a significant distortion in the T-O-T bond angles, a deformation of the internal O-T-O angles within the tetrahedra. The T₂(00) tetrahedron, with the OA(20)-T₂(00)-O_C(0i) angle of 91° and the O_C(0i)-T₂(00)-O_D(0i) angle of 140°, is the most deformed.

Keywords: Crystal structure, high-pressure studies, phase transition, XRD data