Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS

DIANA B. LOOMER,¹ TOM A. AL,^{1,*} LOUISE WEAVER,² AND STEVEN COGSWELL²

¹Department of Geology, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada ²Microscopy and Microanalysis Facility, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada

ABSTRACT

Electron energy loss spectroscopy (EELS) was used with scanning transmission electron microscopy (STEM) to quantify the average Mn valence in natural minerals at the nanometer scale. A method was developed to calibrate the energy-loss scale accurately, providing a comparison between STEM-EELS and the X-ray absorption spectroscopy methods that investigate the L-edge chemical shift as Mn valence changes. The chemical-shift measurements were consistent with data reported by previous researchers from both X-ray and electron energy-loss spectroscopy. The L_3/L_2 white-line intensity ratios also were consistent with previous work. A calibration curve for Mn valence was produced using the L_3/L_2 white-line intensity ratios from measurements of synthetic standards. The average Mn valence was determined because it is not possible to distinguish Mn³⁺ from mixtures of Mn²⁺ and Mn⁴⁺ using either method. The white-line intensity method was implemented in automated software that allows for rapid processing of point spectra, and 1-D and 2-D spectrum images. Point analyses of two natural pyrolusite samples indicated a Mn valence of 4.0, and point analyses of romanechite and manganite gave values of 3.8 and 3.4, respectively. An interface between braunite and bementite was used to illustrate 1-D and 2-D spectrum-imaging capabilities. The measured valence of Mn in the braunite and bementite was 2.9 and 2.0, respectively; both consistent with theoretical values. The braunitebementite sample demonstrated the heterogeneity of Mn valence common to natural minerals and the advantages of acquiring quantitative valence information in a known spatial context.

Keywords: Electron microscopy, electron energy loss spectroscopy (EELS), scanning transmission electron microscopy (STEM), spectrum imaging, valence mapping, manganese, Mn valence, pyrolusite, manganite, romanechite, braunite, bementite