LETTER

Thermochemistry and high-pressure equilibria of the post-perovskite phase transition in CaIrO₃

HIROSHI KOJITANI,* ASUKA FURUKAWA, AND MASAKI AKAOGI

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

ABSTRACT

To study the ambient analog of the deep mantle MgSiO₃ perovskite to post-perovskite phase transition, high-temperature drop calorimetry experiments of perovskite and post-perovskite phases of CaIrO₃ system as well as high-pressure phase equilibrium experiments in the CaIrO₃ system were made. The enthalpies for dissociation of CaIrO₃ (298 K) to CaO + Ir + O₂ (1573 K) were 486.7 ± 9.2 kJ/mol for post-perovskite and 454.5 ± 12.5 kJ/mol for perovskite. From the difference between them, the phase transition enthalpy from perovskite to post-perovskite at 298 K is -32.2 ± 15.5 kJ/mol. This gives 2.7 ± 15.6 kJ/mol as formation enthalpy of CaIrO₃ perovskite from CaO + IrO₂ at 298 K. Using the phase transition enthalpy and volume change of -0.48 ± 0.02 cm³/mol determined in this study, the phase equilibrium boundary is calculated to be *P* (GPa) = 0.040 *T* (K) – 67.1. The strongly positive slope agrees with that obtained in high-pressure experiments. This is consistent with a large positive Clapeyron slope of post-perovskite phase transition in MgSiO₃ recently reported from experimental and theoretical studies.

Keywords: CaIrO₃, post-perovskite, perovskite, calorimetry, thermodynamics, high pressure