American Mineralogist, Volume 92, pages 210-216, 2007

Constraining ¹⁷O and ²⁷Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

KIMBERLY E. KELSEY,^{1,*} JONATHAN F. STEBBINS,¹ LIN-SHU DU,^{1,†} AND BEN HANKINS²

¹Department of Geological and Environmental Sciences Stanford University, Stanford, California 94305-2115, U.S.A. ²U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, U.S.A.

ABSTRACT

The ¹⁷O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of ¹⁵Al and ¹⁶Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The ¹⁷O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The ¹⁷O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl₄O₇) and suspected triclusters in glasses. We also present ²⁷Al NMR spectra for pyrope, grossular, and mullite.

Keywords: NMR spectroscopy, pyrope, grossular, mullite, jadeite, aluminosilicate glasses, oxygen-17, aluminum-27