Reversed phase equilibrium constraints on the stability of Mg-Fe-Al biotite

R.G. BERMAN,^{1,*} L. YA. ARANOVICH,² D.G. RANCOURT,³ AND P.H.J. MERCIER⁴

¹Geological Survey of Canada, 615 Booth Street, Ottawa, Ontario, Canada K1A 0E9

²Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemisty, 119017 Moscow, Russia ³Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

ment of Thysics, University of Ottawa, Ottawa, Ontario, Canada Kity

⁴Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6

ABSTRACT

The stability of Mg-Fe-Al biotite has been investigated with reversed phase-equilibrium experiments on four equilibria. Experimental brackets in pure H₂O and H₂O-CO₂ mixtures for the equilibrium:

 $phlogopite + 3 quartz = enstatite + sanidine + H_2O$ (1)

are in good agreement with previous experiments in mixed-volatile fluids (Bohlen et al. 1983) and H₂O-KCl solutions (Aranovich and Newton 1998), while indicating a reduced stability field for phlogopite compared to previous data in pure H₂O (Wood 1976; Peterson and Newton 1989). Aluminum solubility in biotite has been determined in the Fe-, Mg-, and Fe-Mg systems from reversed phase-equilibrium data for the equilibria:

3 eastonite + 6 quartz = 2 phlogopite + 3 sillimanite + sanidine +
$$H_2O$$
 (2)

 $3 \text{ siderophyllite } + 6 \text{ quartz} = 2 \text{ annite } + 3 \text{ sillimanite } + \text{ sanidine } + \text{H}_2\text{O}$ (3)

over the *P*-*T* range ~600–750 °C and 1.1–3.4 kbar. Over the investigated temperatures, the brackets define nominal Al saturation levels of 1.60 ± 0.04 in Mg-biotite, 2.08 ± 0.05 in Fe-biotite, and 1.81 ± 0.03 in biotite with Fe/(Fe + Mg) = 0.43–0.44. The slight decrease in Al with increasing *T* and decreasing *P* suggested by the data is less than experimental uncertainties.

Compared to biotite on the Phl–Ann join, Al-saturated biotites have a markedly larger stability field, particularly in the Fe-system. This effect has been quantified in the Fe-system with one reversal between 691–709 °C at 2.4 kbar for the equilibrium:

biotite + sillimanite + quartz = almandine + sanidine +
$$H_2O$$
 (4)

The combined experimental results place tight constraints on the thermodynamic properties of phlogopite, annite, eastonite, and siderophyllite. The resulting nonzero ($\Delta H_{298} = -9.4 \text{ kJ/mol}$, with $\Delta S = \Delta V = 0$) energetics for the internal equilibrium:

Eastonite +
$$2/3$$
 Annite = $2/3$ Phlogopite + Siderophyllite (5)

reflect strong Fe-Al affinity in biotite, which has a marked effect on thermobarometers involving biotite.

Keywords: Biotite, phase equilibria, experimental petrology, mixing properties, annite, phlogopite, siderophyllite, eastonite