Co²⁺-Cu²⁺ substitution in bieberite solid-solution series, (Co_{1-x}Cu_x)SO₄·7H₂O, 0.00 ≤ x ≤ 0.46: Synthesis, single-crystal structure analysis, and optical spectroscopy

GÜNTHER J. REDHAMMER,^{1,2,*} LISA KOLL,¹ MANFRED BERNROIDER,¹ GEROLD TIPPELT,¹ GEORG AMTHAUER,¹ AND GEORG ROTH²

¹Division of Mineralogy, Department of Material Science, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria ²Institute of Crystallography, RWTH—Aachen University, Jägerstr. 17/19, D-52056 Aachen, Germany

ABSTRACT

Single crystals of Cu-substituted bieberite (Co_{1-x}Cu_x)SO₄·7 H₂O have been synthesized from aqueous solution by the evaporation method. It is shown that the solubility of Cu^{2+} in bieberite is limited to 0.46 atoms per formula unit (apfu). Chalcantite $CuSO_4$ ·5H₂O only accommodates a very small amount of ~0.03 Co²⁺ atoms. Structure analysis by X-ray diffraction of single crystals along the join $CoSO_4$ ·7H₂O-CuSO₄·5H₂O showed that the hepta-hydrate phases are monoclinic with $P_{2_1/c}$ symmetry at room temperature, whereas the penta-hydrate phases are triclinic, $P\overline{1}$. Within the Co_{1-y}Cu_ySO₄·7H₂O series $(0 \le x \le 0.46)$, lattice parameters are distinctly altered by the Cu²⁺ substitution, however, the observed changes cannot be ascribed to different ionic radii of Co²⁺ and Cu²⁺ but are due to an increasing distortion of the lattice by increasing Cu^{2+} content. Cu^{2+} is not distributed randomly over the two possible crystallographic metal sites but exclusively enters the M2 site. While all the oxygen atoms coordinating the M1 site act as donors of hydrogen bonding to the sulfate tetrahedron, one oxygen atom at the M2 site is a hydrogen bond acceptor. This may cause the slight tetragonal elongation of the M2 coordination polyhedron, which favors the preferential occupation of this site by Cu²⁺. Optical spectra show typical features of both the Co^{2+} and the Cu^{2+} absorption signatures. While in Co^{2+} -rich hepta-hydrate phases Co²⁺ absorption bands arising from both M1 and M2 sites are detected, there are only bands arising from the M1 site in Co_{0.54}Cu_{0.46}SO₄·7H₂O. This supports the observation of selective substitution of Cu²⁺ at the elongated M2 octahedral site. Cu²⁺ absorption bands can be assigned on the basis of D_{4h} symmetry with increasing splitting of the Cu²⁺, ²T_{2e}, and ²E_e energy levels with increasing Cu²⁺ content.

Keywords: Bieberite, crystal structure, optical spectroscopy, metal sulfate, synthesis