Tetrahedrally coordinated boron in tournalines from the liddicoatite-elbaite series from Madagascar: Structure, chemistry, and infrared spectroscopic studies

ANDREAS ERTL,^{1,*} JOHN M. HUGHES,² STEFAN PROWATKE,³ THOMAS LUDWIG,³ PINNELLI S.R. PRASAD,⁴ FRANZ BRANDSTÄTTER,⁵ WILFRIED KÖRNER,⁶ RALF SCHUSTER,⁷ FRANZ PERTLIK,¹ AND HORST MARSCHALL³

¹Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
²Department of Geology, Miami University, Oxford, Ohio 45056, U.S.A.
³Mineralogisches Institut, Universität Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany
⁴Gas Hydrates Division, National Geophysical Research Institute, Hyderabad 500 007, India
⁵Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Burgring 7, 1014 Vienna, Austria
⁶Institut für Geochemie, Geozentrum, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
⁷Geologische Bundesanstalt, Rasumovskigasse 23, 1030 Vienna, Austria

ABSTRACT

Four colorless tournalines of the liddicoatite-elbaite series from pegmatites from Anjanabonoina, Madagascar, have been characterized by crystal-structure determination and by chemical analyses. Optimized formulae range from ^X(Ca_{0.57}Na_{0.29}D_{0.14}) ^Y(Al_{1.41}Li_{1.33}Mn²⁺_{0.19}) ^ZAl₆ ^T(Si_{5.86}B_{0.14})O₁₈(BO₃)₃ $^{V}(OH)_{300}$ $^{W}[F_{0.76}(OH)_{0.24}]$ [a = 15.8322(3), c = 7.1034(3) Å] to $^{X}(Na_{0.46}Ca_{0.30}\Box_{0.24})$ $^{Y}(Al_{1.82}Li_{0.89}Fe_{0.01}^{+})$ $Mn_{0,1}^{2}\square_{0,27}$ ^ZAl₆ ^T(Si_{5.56}B_{0.44})O₁₈ (BO₃)³ ^V(OH)_{3.00} ^W[(OH)_{0.50}F_{0.50}] [a = 15.8095(9), c = 7.0941(8) Å] (R = 1.3-1.7%). There is a high negative correlation $(r^2 = 0.984)$ between the $\langle T-O \rangle$ bond-lengths $(\sim 1.618 - 1.614 \text{ Å})$ and the amount of ^{IV}B (from the optimized formulae). Similar to the olenites (from Koralpe, Austria) the liddicoatite-elbaite samples show a positive correlation between the Al occupancy at the Y site and ^{IV}B ($r^2 = 0.988$). Short-range order configurations show that the presence of ^{IV}B is coupled with the occupancy of (Al₂Li) and (Al₂L) at the Y site. The structural formulae of the Al-rich tourmalines from Anjanabonoina, Madagascar, show $\sim \Box_{1,2}$ (vacancies) on the Y site. We believe that short-range order configurations with $^{\rm Y}(Al_2\square)$ are responsible for these vacancies. Hence, an oft-used calculation of the Li content by difference on the Y site may be problematic for Al-rich tourmalines (olenite, elbaite, rossmanite). Fourier transform infrared (FTIR) spectra were recorded from the most ^{IV}B-rich tourmaline sample. The bands around 5195 and 5380 cm⁻¹ can be assigned to H₂O. Because these bands still could be observed in FTIR spectra at temperatures from -150 to +600 °C, it seems unlikely that they result from H₂O in fluid inclusions. Interestingly, another FTIR spectrum from a dravite in which the X site is filled completely with Na, does not show bands at ~5200 and ~5400 cm^{-1} . Although not definitive, the resulting spectra are consistent with small amounts of H₂O at the X site of the elbaite. The rare-earth element (REE) pattern of the B-rich elbaite (ΣREE : ~150 ppm) demonstrates that this sample is strongly enriched in LREEs compared to HREEs and exhibits a negative Eu anomaly. This sample shows the strongest enrichment of LREEs and a high La_N/Yb_N ratio of \sim 351, which seems to confirm an important role of the fractional crystallization process.

Keywords: Liddicoatite-elbaite, tetrahedrally coordinated boron, Madagascar, structure, chemistry