Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania)

OLIVIER FÉMÉNIAS,^{1,*} JEAN-CLAUDE C. MERCIER,² COLLIN NKONO,¹ HERVÉ DIOT,^{2,3} TUDOR BERZA,⁴ MIHAI TATU,⁵ AND DANIEL DEMAIFFE¹

¹Laboratoire de Géochimie Isotopique et Géodynamique Chimique, DSTE, Université Libre de Bruxelles (CP 160/02) 50, av. Roosevelt 1050 Bruxelles, Belgium

> ²Université de La Rochelle, av. M. Crépeau, 17042 La Rochelle cedex 1, France ³UMR CNRS 6112, UFR des Sciences et Techniques, BP 92208, 44322 Nantes Cedex 3 France ⁴Institutul Geologic al Romaniei, Bucuresti 78344, Romania

⁵"Sabba S. Stefanescu" Institute of Geodynamics of the Romanian Academy 19-21, Jean Louis Calderon str., Bucuresti 37, RO-70201, Romania

ABSTRACT

A Late Pan-African calc-alkaline dike swarm (basalt-andesite-dacite-rhyolite) has been investigated in a region of over 2000 km² in the Alpine Danubian window, South Carpathians (Romania). Amphibole phenocrysts and microphenocrysts have been investigated by wavelength-dispersive microprobe analysis and BSE imaging. The Ca-amphibole population, represented in all the lithologies, displays a large compositional range, interpreted as the result of two processes: (1) magmatic evolution (kaersutite \rightarrow Ti-pargasite \rightarrow pargasite \rightarrow Ti-magnesiohastingsite \rightarrow magnesiohastingsite \rightarrow edenite \rightarrow tschermakite \rightarrow magnesiohornblende) linked to magmatic differentiation from andesitic basalt to rhyolite; and (2) deuteritic alteration of the primary amphibole related to late-emplacement hydrothermal activity (yielding numerous varieties comprising those cited above). In all rock types, amphibole phenocrysts equilibrated at a nearly constant pressure of about 0.6 ± 0.1 GPa, but their temperatures of crystallization ranged from 1000–900 °C for basaltic andesites to 700–600 °C for dacites. In rhyolites, edenite to magnesiohornblende crystals reflect a continuous range of *P-T* conditions from 700 °C/0.6 GPa to 600 °C/0.1 GPa, in agreement with their change of habit from euhedral to subhedral. Complex zonations in pargasite-magnesiohastingsite (including resorption) are interpreted in term of self-organization of oscillatory zoning without significant heating and/or magma mixing.

Keywords: Crystal structure, calcic amphibole, crystal growth, magmatic zonation, igneous petrology, calcalkaline magma, thermobarometry