American Mineralogist, Volume 90, pages 1008-1011, 2005

LETTER

Stability of the MgCO₃ structures under lower mantle conditions

NATALIA V. SKORODUMOVA,^{1,*} ANATOLY B. BELONOSHKO,^{2,3} LUNMEI HUANG,¹ RAJEEV AHUJA,^{1,2} AND BÖRJE JOHANSSON^{1,2}

¹Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE-751 21, Uppsala, Sweden ²Applied Materials Physics, Department of Materials Science and Engineering, The Royal Institute of Technology, SE-100 44 Stockholm, Sweden ³Condensed Matter Theory Group, Department of Physics, AlbaNova University Center, The Royal Institute of Technology, SE-106 91 Stockholm, Sweden

ABSTRACT

The presence of carbon in the Earth makes the search for high-pressure carbon-containing phases essential for our understanding of mineral compositions of the Earth's mantle. In a recent study Is-shiki et al. (2004) demonstrated that magnesite transforms into a new phase at lower mantle pressures. However, the structure of the emerging phase remained unknown. Here we show, by means of first principles calculations, that MgCO₃ magnesite can transform into a pyroxene structure at 113 GPa, which further transforms into a CaTiO₃-type structure at about 200 GPa.