Niksergievite, [Ba_{1.33}Ca_{0.67}Al(CO₃)(OH)₄][Al₂(AlSi₃O₁₀)(OH)₂]·*n*H₂O, a new phyllosilicate related to the surite-ferrisurite series

SERGEY P. SABUROV,¹ SERGEY N. BRITVIN,^{2,*} GALIYA K. BEKENOVA,¹ MARINA N. SERGIEVA,¹ PETR E. KOTELNIKOV,¹ NIKITA V. CHUKANOV,³ AND MARIYA A. YAGOVKINA⁴

¹Satpaev Institute of Geological Sciences, Kabanbai batyr, 69a, Almaty, 480100, Kazakhstan
²Department of Mineral Deposits, St. Petersburg State University, Universitetskaya Naberezhnaya 7/9, RU-199034 St. Petersburg, Russia
³Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, RU-142432 Moscow oblast, Russia
⁴Ioffe Physico-Technical Institute, Russian Academy of Sciences, Polytekhnicheskaya Ulitsa 26, RU-194021 St. Petersburg, Russia

ABSTRACT

Niksergievite, $[Ba_{1,3}Ca_{0,67}Al(CO_3)(OH)_4][Al_2(AlSi_3O_{10})(OH)_2] \cdot nH_2O$, is a new phyllosilicate closely related to the surite-ferrisurite series. It was found at the -400 m level of the Tekeli Pb-Zn mine, southeast Kazakhstan (44° N, 78° E). The mineral occurs as curved plates 3–5 mm in size forming rosette-like aggregates up to 5 cm across. Associated minerals include calcite, quartz, dolomite, celsian, sphalerite, pyrite, barite, and montmorillonite. Niksergievite is white with a light greenish tint and pearly luster on cleavage planes. The streak is white and the mineral is non-fluorescent. The Mohs hardness is $1-1^{1/2}$. The cleavage is perfect (mica-like) on {001}. $D_m = 3.16$ g/cm³ and $D_x = 3.21$ g/cm³. The IR spectrum shows the following peaks (* shoulder): 3665*, 3640, 3405, 1630, 1454, 1105*, 1080*, 1035, 1020*, 980*, 960*, 920*, 876, 835*, 750*, 704, 625*, 560*, 535, 474, and 417 cm⁻¹. Optically, the mineral is colorless, non-pleochroic, biaxial (-), $2V = 0 - 10^{\circ}$, $\alpha = 1.580(2)$, $\beta = 1.625(2)$, $\gamma = 1.625(2)$, and $X \sim 10^{\circ}$ c. The chemical composition (electron microprobe, CO₂ and H₂O by TGA) is K₂O 0.1, CaO 5.1, BaO 27.1, MgO 0.4, FeO 0.2, Al₂O₃ 24.8, SiO₂ 28.7, CO₂ 6.1, and H₂O 8.3, with a total of 100.8 wt%. The empirical formula based on (Si + Al + Mg + Fe) = 7 is $(Ba_{1,27}Ca_{0.65}K_{0.02})_{1.92}(Al_{3.49}Si_{3.42}Mg_{0.07}Fe_{2+0.07}^{++})_{7.00}O_{10.00}$ $(CO_3)_{0.99}(OH)_{6.20} \cdot 0.20H_2O$. The simplified formula is $(Ba,Ca)_2(Al,Si)_7O_{10}(CO_3)(OH)_6 \cdot nH_2O$ and the proposed structural formula is [Ba_{1,33}Ca_{0.67}Al(CO₃)(OH)₄][Al₂(AlSi₃O₁₀)(OH)₂]·nH₂O. The mineral is monoclinic, C2/c, C2, or Cm, a 5.176(3), b 8.989(3), c 16.166(5) Å, $\beta 96.44(6)^{\circ}$, V 747.4(9) Å³, Z =2. The strongest reflections in the X-ray powder diffraction pattern are as follows $[d \text{ in } \text{\AA}, (I) (hkl)]$: $16.1(40)(001), 4.49(90)(020), 3.68(60)(014,\overline{1}13), 2.585(100)(130,\overline{2}01,\overline{1}31), 2.230(90)(\overline{1}34,220),$ 2.069(80)(043), 1.692(60)(311,151,240). It is named in honor of Prof. Nikolai Grigorievich Sergiev (1901–1960) for his contributions to the geology of Kazakhstan.