P-V equation of State, thermal expansion, and *P-T* stability of synthetic zincochromite (ZnCr₂O₄ spinel)

DAVIDE LEVY,¹ VALERIA DIELLA,² ALESSANDRO PAVESE,^{2,3,*} MONICA DAPIAGGI,² AND ALESSANDRA SANI⁴

¹Dipartimento Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, Via Valperga Caluso 35, 10025 Torino, Italy
²National Research Council, IDPA, Milan section, Via Botticelli 23-20133 Milano, Italy
³Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23-20133 Milano, Italy
⁴European Synchrotron Radiation Facility, ESRF-F 38043 Grenoble Cedex, France

ABSTRACT

The elastic properties and thermal behavior of synthetic zincochromite (ZnCr_2O_4) have been studied by combining room-temperature high-pressure (0.0001–21 GPa) synchrotron radiation powder diffraction data with high-temperature (298–1240 K) powder diffraction data. Elastic properties were obtained by fitting two Equations of State (EoS) to the *P*-V data. A third-order Birch-Murnaghan model, which provides results consistent with those from the Vinet EoS, yields: $K_0 = 183.1(\pm 3.5)$ GPa, $K' = 7.9(\pm 0.6)$, K'' = -0.1278 GPa⁻¹ (implied value), at $V_0 = 577.8221$ Å³ (fixed). Zincochromite does not exhibit order-disorder reactions at high temperature in the thermal range explored, in agreement with previous studies. The volume thermal expansion was modeled with $\alpha_V = \alpha_0 + \alpha_1 T + \alpha_2/T^{-2}$, where only the first coefficient was found to be significant [$\alpha_0 = 23.0(4)$ 10⁻⁶ K⁻¹]. Above 23 GPa diffraction patterns hint at the onset of a phase transition; the high pressure phase is observed at approximately 30 GPa and exhibits orthorhombic symmetry. The elastic and thermal properties of zincochromite were then used to model by thermodynamic calculations the *P*-*T* stability field of ZnCr₂O₄ with respect to its oxide constituents (Cr₂O₃ and rocksalt-like ZnO). Spinel is expected to decompose into oxides at about 18 GPa and room temperature, in absence of sluggish kinetics.