American Mineralogist, Volume 90, pages 266-270, 2005

LETTER

Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH

K. KOMATSU,^{1,2,*} H. KAGI,² T. OKADA,^{2,†} T. KURIBAYASHI,¹ J.B. PARISE,³ AND Y. KUDOH¹

¹Institute of Mineralogy, Petrology and Economic Geology, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ²Laboratory for Earthquake Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan ³Departments of Geosciences and Chemistry, SUNY at Stony Brook, Stony Brook, New York 11794-2100, U.S.A.

ABSTRACT

OH stretching vibration modes for F-rich natural topaz (F-topaz) and for fully hydrated topaz (topaz-OH) synthesized at high pressure, were observed using IR and Raman spectroscopies at pressures up to 30.4 GPa and 17.3 GPa, respectively. In F-topaz, the pressure derivative of the frequency of the OH stretching band observed at 3650 cm⁻¹ at ambient pressure was 0.91(3) cm⁻¹/GPa, which was consistent with the value recently reported by Bradbury and Williams (2003). On the other hand, in topaz-OH, the pressure derivatives of the bands initially at 3599 and 3522 cm⁻¹ were -5.2(2) and -2.56(6) cm⁻¹/GPa, respectively. This contrasting behavior between the two forms of topaz at high pressures suggests that the OH substitution for F in topaz affects the hydrogen-bonding behavior under high pressure.