American Mineralogist, Volume 90, pages 22-27, 2005

Evidence for monazite-, barite-, and AgMnO₄ (distorted barite)-type structures of CaSO₄ at high pressure and temperature

WILSON A. CRICHTON,^{1,*} JOHN B. PARISE,² SYTLE M. ANTAO,² AND ANDRZEJ GRZECHNIK³

¹European Synchrotron Radiation Facility, B. P. 220, F-38043 Grenoble, France

²Dept Chemistry, Dept Geosciences and MPI, State University of New York, Stony Brook, New York 11794-2100, U.S.A. ³Laboratory of Crystallography, Universität Bayreuth, Bayreuth D-95440, Germany

ABSTRACT

Using laser-heated diamond-anvil cells, we have observed $CaSO_4$ undergoing phase transitions from its ambient anhydrite structure to the monazite type, and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts from an orthorhombic to a monoclinic lattice to produce the AgMnO₄-type structure. The barite-structured form of CaSO₄ that we encounter at high pressure and temperature has been, in particular, long expected as a highpressure phase of CaSO₄-anhydrite from systematic trends of similar A^{II}B^{vI}O₄-type sulfates, selenates, and tellurates, but has not been observed before. Similarly, the monoclinic distortion of the barite structure has itself been proposed as an intermediate phase between anhydrite and barite types through comparison with the phase diagrams of NaBF₄ and NaClO₄. This result has important consequences for identifying structural trends between different ABO₄-type phases of Group II sulfates, selenates, tellurates, chromates, molybdates and tungstates that crystallize in anhydrite, zircon, monazite, barite and scheelite-type structures at ambient and high pressures.