Cation ordering in magnesioferrite, MgFe₂O₄, to 982 °C using in situ synchrotron X-ray powder diffraction

SYTLE M. ANTAO,^{1,*} ISHMAEL HASSAN,² AND JOHN B. PARISE¹

¹Mineral Physics Institute and Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, U.S.A. ²Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica

ABSTRACT

Magnesioferrite spinel, MgFe₂O₄, was synthesized at 900 °C from equimolar amounts of reagentgrade oxides, MgO and Fe₂O₃, and quenched in air. The structural behavior of magnesioferrite was determined from in situ synchrotron X-ray powder-diffraction data [$\lambda = 0.92225(4)$ Å] at room pressure and temperatures from 28 to 982 °C on heating and cooling. The a unit-cell parameter increases linearly on heating, but deviates to give a discontinuity at 581 °C. Above 581 °C and on cooling from 982 °C, the *a* parameter varies linearly. The *a* parameter at 28 °C before heating [8.39704(5) Å] and after cooling to 47 °C [8.39514(4) Å] is different because the cation order frozen in the structure is not the same. Cation order, analyzed in terms of the inversion parameter, x, $\{i^{v}|Mg_{1-x}Fe_{x}\}^{vi}|Mg_{v/2}Fe_{1-v/2}|_{2}$ O_4 , and the order parameter, Q = 1 - (3/2) x, show no change on heating until the temperature is high enough to cause exchange of Mg²⁺ and Fe³⁺ cations between the octahedral and tetrahedral sites. This activation barrier is overcome at 581 °C, where the sample achieves the maximum ordered state on heating $[x_{max} = 0.867(4)]$ and begins to move toward equilibrium. This relaxation is toward a more ordered configuration and is a kinetically controlled process. Above 581 °C, the cations continuously disorder along the equilibrium pathway to the maximum temperature studied $[T_{\text{max}} = 982 \text{ °C}, x =$ (0.769(3)) and reverse along the equilibrium pathway on cooling. At $T_{\rm B}$, the maximum equilibrium order is frozen in, and maintained to room temperature, where $x_{max} = 0.895(4)$. O'Neill-Navrotsky, Landau, and Ginzburg-Landau models give good descriptions of the ordering process in MgFe₂O₄. Simultaneous differential scanning calorimetry (DSC) and thermogravimetry (TG) data were obtained using a Netzsch STA 449C simultaneous TG-DSC instrument. The DSC curve for MgFe₂O₄ contains an irreversible exothermic peak at about 550 °C = T_{relax} in the first heating experiment, and the energy change associated with this peak is -162 J/g (= -32 KJ/mol), and corresponds to cation relaxation. From Rietveld refinements, $T_{relax} \approx 581$ °C. The $T_{Curie} \approx 360$ °C was obtained from TG experiments carried out in a magnetic field.