American Mineralogist, Volume 90, pages 732-736, 2005

Clinoholmquistite discredited: The new amphibole end-member fluoro-sodic-pedrizite

ROBERTA OBERTI,* FERNANDO CÁMARA, AND LUISA OTTOLINI

CNR - Istituto di Geoscienze e Georisorse, Via Ferrata 1, I-27100 Pavia, Italy

ABSTRACT

Re-examination of holotype "clinoholmquistite", ideally ^A ^BLi₂ ^C(Mg₃Al₂) ^TSi₈ O₂₂ ^X(OH)₂ (Ginzburg 1965) from the Tastyg spodumene deposit, Tuva, Siberia, Russia by EMP and SIMS analysis and structure refinement shows that the sample consists of a mixture of two distinct amphibole compositions, tremolite and a new amphibole end-member, fluoro-sodic-pedrizite, ideally ^ANa ^BLi₂ ^C(Mg₂Al₂Li) ^TSi₈ O₂₂ ^XF₂ (IMA-CNMMN 2004-002). Fluoro-sodic-pedrizite from Tastyg has the following crystal-chemical formula and unit-cell parameters: ^A(Na_{0.64}K_{0.01}) ^B(Li_{1.93}Ca_{0.04}Na_{0.03}) ^{M1}(Mg_{1.69}Fe²⁺_{0.31}) ^{M2}(Al_{1.98}Cr_{0.01}Zn_{0.01}) ^{M3}(Li_{0.64}Fe²⁺_{0.21}Mg_{0.13}Mn_{0.02}) ^{T1}(Si_{3.96}Al_{0.04}) ^{T2}Si₄ O₂₂ ^X(F_{1.10}OH_{0.90}), *a* = 9.368(8), *b* = 17.616(10), and *c* = 5.271(4) Å, β = 102.38(4)°, *V* = 849.6 Å³, *Z* = 2. The structure has been refined to *R*_{obs} = 2.3% (*I* > 3 σ_1) and *R*_{all} = 3.8%. Refined site-scattering values and site-geometries were used, together with EMP and SIMS results, to obtain site populations. Fluoro-sodic-pedrizite is the first amphibole end-member with dominant ^CLi found in Fe-poor geologic environments. The coexisting tremolite contains only 0.002 wt% Li₂O and 0.06 wt% B₂O₃, probably ordered at the T1 site. Crystal-chemical arguments, as well as preliminary experimental work, suggest clinoholmquistite is unstable.