Structure change of MgSiO₃, MgGeO₃, and MgTiO₃ ilmenites under compression T. YAMANAKA,* Y. KOMATSU, M. SUGAHARA, AND T. NAGAI

Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

ABSTRACT

Compression mechanisms of $A^{2+}B^{4+}O_3$ ilmenites with compositions MgSiO₃ (stable at high pressures), MgGeO₃ (stable at moderate pressures), and MgTiO₃ (stable at ambient pressure) were investigated at high pressure by single-crystal structure analysis, using both synchrotron radiation and an MoK α rotating-anode X-ray generator. The distortions of AO₆ (A:Mg) and BO₆ (B: Si,Ge,Ti) octahedra under pressure were parameterized by bond length, shared-face area, site-volume ratio, and $A^{2+}-B^{4+}$ interatomic distance across the shared edges and shared face. The AO₆ octahedral volume is much more compressive than the BO_6 octahedral volume. Of the three samples, both the AO_6 and BO₆ octahedra are most rigid in MgSiO₃. The A²⁺-B⁴⁺ interatomic distance becomes more shortened with increasing pressure than do the A²⁺-A²⁺ and B⁴⁺-B⁴⁺ distances. The compression of Mg-Si is more remarkable than that of Mg-Ge and Mg-Ti. The A-B interatomic distance along c is more compressed with increasing pressure than A-A and B-B along a. The short A-B distance across the shared face becomes more shortened than the A-A and B-B distances across the shared edge. The cation position moves in the direction of c with pressure and tends to approach the center of the AO₆ and BO₃ octahedra with increasing pressure. The regularity of the octahedra is enhanced at higher pressure. Both quadratic elongation and bond angle variance verify the reduction of the deformation of AO_6 and BO₆ octahedra with pressure.