LETTER

Porous titanosilicate nanorods in the structure of yuksporite, $(Sr,Ba)_2K_4(Ca,Na)_{14}(\Box,Mn,Fe)$ ${(Ti,Nb)_4(O,OH)_4[Si_6O_{17}]_2[Si_2O_7]_3}(H_2O,OH)_n$, resolved using synchrotron radiation

SERGEY V. KRIVOVICHEV,^{1,*} VIKTOR N. YAKOVENCHUK,² THOMAS ARMBRUSTER,³ NICOLA DÖBELIN,³ PHILIPP PATTISON,^{4,5} HANS-PETER WEBER,^{4,5} AND WULF DEPMEIER⁶

¹Department of Crystallography, Faculty of Geology, St. Petersburg State University, St. Petersburg 199034, Russia ²Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity 184200, Russia ³Laboratorium für chemische and mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3102 Bern, Switzerland

⁴Swiss-Norwegian beamline, European Synchrotron Radiation Facility, BP 220, Grenoble 38043, France

⁵Laboratoire de Cristallographie, University of Lausanne, BSP Dorigny, CH-1015 Lausanne, Switzerland

⁶Institut fuer Geowissenschaften, Mineralogie/Kristallographie, Kiel Universität, Olshausenstrasse 40, 24118 Kiel Germany

ABSTRACT

The crystal structure of yuksporite, $(Sr,Ba)_2K_4(Ca,Na)_{14}(\Box,Mn,Fe){(Ti,Nb)_4(O,OH)_4[Si_6O_{17}]_2[Si_2O_{7}]_3}(H_2O,OH)_n$, where $n \sim 3$ [monoclinic, $P2_1/m$, a = 7.126(3), b = 24.913(6), c = 17.075(7) Å, $\beta = 101.89(3)^\circ$, V = 2966.4(17) Å³] has been solved using X-ray synchrotron radiation data collected from a needle-like crystal with dimensions of $6 \times 6 \times 50 \mu m^3$ at the Swiss-Norwegian beamline BM01 of the European Synchrotron Research Facility (ESRF, Grenoble, France). The structure was refined to $R_1 = 0.101$ on the basis of 2359 unique observed reflections with $|F_o| \ge 4\sigma_F$. The structure of yuksporite is based upon titanosilicate nanorods elongated along **a** and with an elliptical cross-section of ca. 16×19 Å = 1.6×1.9 nm. Silicate tetrahedra form double xonotlite-like chains ${}^1_{\infty}[Si_6O_{17}]$ oriented parallel to (001). Two ${}^1_{\infty}[Si_6O_{17}]_2[Si_2O_{7}]_3$ nanorods are porous. The internal pores are defined by eight-membered rings (8MR) with open diameters of 3.2 Å. The interior of the titanosilicate nanorods is occupied by Sr, Ba, K, and Na cations and H₂O molecules. The nanorods are separated by walls of Ca coordination polyhedra that are parallel to (010) and link the rods into a three-dimensional structure.