Arsenate sorption on schwertmannite

KEISUKE FUKUSHI,^{1,}† TSUTOMU SATO,^{2,}* NOBUYUKI YANASE,³ JUNICHI MINATO,⁴ AND HIROHISA YAMADA⁴

¹Research Center for Deep Geological Environments, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan

²Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan ³Department of Environmental Sciences, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan ⁴Ecomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0049, Japan

ABSTRACT

The sorption mechanism of arsenate [As(V)] on schwertmannite was investigated by means of batch sorption experiments as a function of As(V) concentration in acidic solution at 25 °C. Structural simulation indicated that the surface sites of schwertmannite comprised various O atom (or hydroxyl) and SO₄ groups. Sorption experiments showed that the reactive sites for As(V) sorption are surfacecoordinated SO₄ groups rather than surface hydroxyl groups, as reported in earlier studies. The As(V)sorption mechanism involves ligand exchange with surface-adsorbed and structural SO₄. The results of the sorption experiments also suggested monodentate As(V) coordination at the surface-adsorbed SO₄ sites [(Fe₁)₂SO₄] and bidentate As(V) coordination at the structural SO₄ sites [(Fe₃)₂SO₄]. The overall ligand-exchange reaction was

 $0.61 (Fe_1)_2SO_4 + 0.39 (Fe_3)_2SO_4 + 1.61 H_2AsO_4^- \rightarrow 1.22 Fe_1H_2AsO_4 + 0.39 (Fe_3)_2HAsO_4 + 0.39 H^+ + SO_4^{-1} + S$

where the 1 and 3 in Fe₁ and Fe₃ are coordination numbers. The equilibrium constant derived for the exchange reaction, $\log K_{EX} = 4.96$, describes the observed As(V) sorption behavior. Nanocrystalline materials like schwertmannite are widespread in nature and typically contain significant amounts of anionic impurities, such as sulfate and silicate. Our results indicate that the effects of impurities can be significant and should be considered in order to gain a realistic understanding of sorption processes in natural systems.