Origin of diffuse superstructure reflections in labuntsovite-group minerals

THOMAS ARMBRUSTER,^{1,*} SERGEY V. KRIVOVICHEV,² THOMAS WEBER,³ EDWIN GNOS,⁴ NATALIA N. ORGANOVA,⁵ VIKTOR N. YAKOVENCHUK,⁶ AND ZOYA V. SHLYUKOVA⁵

Laboratorium für chemische und mineralogische Kristallographie, Universtät Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

²Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia

³Laboratory of Crystallography, ETH, ETH-Zentrum, CH-8092 Zurich, Switzerland

⁴Institut für Geologie, Universtät Bern, Baltzerstr. 1, CH-3012 Bern, Switzerland

⁵Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry, Russian Academy of Sciences, Staromonetny per. 35, 109017 Moscow, Russia

⁶Geological Institute, Kola Science Center of the Russian Academy of Sciences, 184200 Apatity, Russia

ABSTRACT

The average crystal structures of two natural porous titanosilicates of the labuntsovite group, lemmleinite-Ba and lemmleinite-K, ideally Na₄K₄Ba₂Ti₈(Si₄O₁₂)₄O₄(OH)₄·8H₂O and Na₄K₄K₂Ti₈(Si₄O₁₂)₄O₂(OH)₆·8H₂O, respectively, have been refined from single crystal X-ray diffraction data. Both samples represent an extensive solid solution with labuntsovite sensu strictu Na₄K₄D₂Ti₈(Si₄O₁₂)₄O₄(O H)₄·10H₂O where D = Mn, Fe, and Mg. In addition to the sharp Bragg reflections both crystals, space group *C2/m*, *a* = 14.3, *b* =13.8, *c* = 7.75 Å, β = 117°, exhibit diffuse layers at *c**/2 intervals indicating faulty superstructures with *c* = 15.7 Å. The diffuse layers consist of two types of reflections. The dominant type is strongly diffuse and smeared along **a*** indicating an *I*-centered Bravais lattice. The other type is very sharp but also weak and is in agreement with a *C*-centered lattice. Models for both superstructures have been developed on the basis of crystal-chemical principles and their theoretical diffraction patterns have been calculated and compared with the observed diffuse layers yielding excellent qualitative agreement.

X-ray structure refinements of the average structure at -160 and 22 °C indicate temperature independent (static) disorder of Ti within rather rigid TiO₆ octahedra connected to chains that extend along **a.** This Ti disorder is interpreted in terms of long-range order of OH and O in the superstructures where these anions occupy the corner-connecting octahedral apices in an ordered fashion. An additional effect of OH, O order is an ordered arrangement of extraframework Ba (K) that only bonds to O but not to OH sites exposed on the channel walls.

Temperature dependent cell dimensions between -160 and +200 °C suggest a phase transition at ca. -80 °C. However, the structural data obtained from the average structures, refined at -160 and 22 °C, did not allow us to draw crystal-chemical conclusions about the nature of the phase transition. Dehydration of the investigated lemmleinite-Ba starts at ca. 150 °C leading to increasing extraframework disorder and decreasing crystal quality as evidenced by strong smearing of the originally sharp Bragg reflections.