Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: Origin and evolution of garnet exsolution in clinopyroxene

RUY. ZHANG* AND JUHN G. LIOU

Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

ABSTRACT

The Rizhao garnet clinopyroxenite occurs as small mantle slices faulted into subducted continental crust in the Sulu ultrahigh-pressure (UHP) terrane, China. Two representative garnet clinopyroxenites with exsolution microstructures were studied: (1) a massive ilmenite-rich specimen, composed of coarse-grained clinopyroxene containing abundant exsolution rods of grossularrich garnet (>20 vol%) + ilmenite (~3-4 vol%) in a fine-grained matrix of clinopyroxene + garnet + ilmenite; and (2) megacrystic garnet-bearing sample, characterized by garnet containing inclusions of clinopyroxene and ilmenite; the clinopyroxene inclusions show exsolution rods and blebs with variable amounts of garnet (1-15 vol%) and minor ilmenite. Both exsolved and matrix garnets have similar grossular-rich compositions. The aggregate composition of clinopyroxene + garnet + ilmenite intergrowth is similar to the whole-rock composition. We propose that the parental phase of exsolved garnet + ilmenite lamellae and clinopyroxene host was either a homogeneous clinopyroxene (hypothesis A) or a majoritic garnet (hypothesis B) that experienced three discrete evolution stages. If the parental phase was clinopyroxene (ABO₃), with an Si deficiency in the B site, the Rizhao garnet clinopyroxenite could have an initial assemblage clinopyroxene \pm Grt \pm Ilm formed at nearsolidus conditions (≤1400 °C, at 5 GPa) in the upper mantle. The second stage is defined by garnet exsolution from the primary clinopyroxene involving decreasing temperature and/or increasing pressure, related to continental subduction. Coexisting clinopyroxene host and garnet exsolution (Grtexs) recrystallized at temperatures of ~900 $^{\circ}$ C at an assumed minimum P of 5 GPa. The third stage is represented by recrystallization of exsolution phases to form the fine-grained matrix of Cpx + Grt + Ilm at 700 °C and \geq 3 GPa during the early exhumation of the UHP terrane. The speculative hypothesis B implies that the proposed majoritic garnet was from the mantle transition zone (<450 km depth); this suggestion remains to be tested.