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INTRODUCTION

Gold-rich, porphyry-type ore deposits are associated with
both oxidized and reduced magmatic intrusions (Sillitoe 2000;
Thompson and Newberry 2000; Rowins 2000). Oxidized ore
deposits commonly contain primary magnetite, and form at
oxygen fugacities between the nickel-nickel oxide (NNO) and
hematite-magnetite (HM) oxygen fugacity buffers at the tem-
peratures of mineralization (Sillitoe 2000). Reduced deposits
contain primary Cu-Fe and Fe sulfides (e.g., chalcopyrite and
pyrrhotite, respectively), and form at oxygen fugacities below
the quartz-fayalite-magnetite (QFM) oxygen fugacity buffer at
the temperatures of mineralization (Rowins 2000). It is gener-
ally accepted that Au in both types of porphyry deposits is ge-
netically related, spatially and temporally, to the magmatic
intrusions that are associated with the Au ore (Lindgren 1905;
Emmons 1927; Burnham 1979; Titley 1981; Sillitoe 1989;
Richards et al. 1991; Hedenquist et al. 1998). Gold mineraliza-
tion forms via the separation of a magmatic volatile phase
(MVP) from a magma, concomitant partitioning of Au from
the melt into the MVP, egress and ascent of the MVP from the
magma chamber, and precipitation of metals as physico-chemi-
cal changes in the MVP decrease the solubility of Au (Holland
1972; Burnham 1979; Candela and Holland 1984; Gammons
and Williams-Jones 1997; Hedenquist and Richards 1998). The
efficiency with which Au will partition into the MVP from a
melt is a function of the concentration of Au-complexing ligands
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ABSTRACT

The solubility of Au metal in rhyolite melt and coexisting magnetite has been determined at 800
∞C, 140 MPa, and fO2 ª NNO in a Au-metal saturated, sulfur-free, vapor-brine-silicate melt system.
Whole crystals of magnetite suspended within quenched rhyolite glass were analyzed by LA-ICP-
MS. These data yield a solubility of Au in magnetite on the order of 2 mg/g. The solubility of Au
metal in rhyolite melt hosting the magnetite crystals is on the order of 500 ng/g. These data indicate
a partition coefficient for Au between magnetite and melt, DA

M
u
t/melt ª4. Using reasonable estimates of

the mass fraction of magnetite that crystallizes in crustal magmatic systems, we modeled the propor-
tion of Au sequestered by magnetite during fractional crystallization. We considered fractionation in
two steps: the idealized derivation of a rhyolite by fractionation of basalt at depth, and the closed-
system crystallization of the rhyolite in a magma chamber below the site of ore deposition. Magne-
tite sequesters 14–54% Au from basaltic parent melt that produces a rhyolite melt via crystal
fractionation, at modal abundances of 1–5%. Less then 4% Au is sequestered from a crystallizing
rhyolite melt because of low modal abundances of magnetite (<~2%). Our experimental and model
results suggest that early crystallization of magnetite can play a mitigating role in the ability of a
calc-alkaline magmatic system to yield a Au-rich ore fluid.

(e.g., Cl–, HS–) in the MVP (Candela and Piccoli 1995, 1998;
Frank et al. 2002). A fundamental limitation on the mass trans-
fer of Au from melt into an MVP is the proportion of Au re-
maining in the melt at the time of volatile saturation. Ultimately,
the formation of Au-rich magmatic-hydrothermal ore lies in
the extent to which a differentiating magmatic system retains
Au in the melt phase while undergoing progressive composi-
tional evolution. The probability of formation of an Au-rich
porphyry deposit decreases if volatile exsolution occurs after a
significant amount of Au has been sequestered by crystallizing
phases (Candela 1989, 1992), unless these phases (e.g., mag-
matic sulfides) are sufficiently reactive to release the ore met-
als upon volatile saturation (Halter et al. 2002b). Variations in
ligand concentration in the fluid also affect the efficiency of
ore-metal transfer from the melt to the volatile phase. To model
the behavior of Au in both oxidized and reduced magmatic
environments, it is necessary to quantify the potentially miti-
gating effects of early crystallized magmatic phases on the Au
availability in melts reaching the porphyry environment.

In S-rich, oxidized (i.e., ~NNO) magmatic systems, the crys-
tallizing magmatic phases of interest include Fe oxides and Fe-
and Cu-Fe sulfides. Experimental studies demonstrate that sul-
fide minerals play a significant role in Au behavior in S-rich
melts (Cygan and Candela 1995; Jugo et al. 1999; Simon et al.
2000). In contrast, the ability of oxide phases to sequester Au
in S-poor, oxidized (i.e., ~NNO) magmatic systems has re-
mained largely unconstrained. Togashi and Terashima (1997)
suggested that magnetite can sequester Au in oxidized mag-


