The structural behavior of Al³⁺ in peralkaline melts and glasses in the system Na₂O-Al₂O₃-SiO₂

BJORN O. MYSEN,^{1,*} AMIE LUCIER,² AND GEORGE D. CODY¹

¹Geophysical Laboratory, Carnegie Institution of Washington, Washington D.C., U.S.A. ²University of California at Davis, Davis California, U.S.A.

ABSTRACT

The structural behavior of Al^{3+} in peralkaline glasses and melts along the $Na_2Si_3O_7$ - $Na_2(NaAl)_3O_7$ join has been examined to 1200 °C at ambient pressure with ²⁹Si MAS NMR and Raman spectroscopy. The distribution of Al^{3+} among coexisting Q^4 , Q^3 , and Q^2 structural units in the glasses and melts was determined as a function of bulk Al/(Al + Si) and temperature. The Al^{3+} resides principally in Q^4 structural units, which contain more than 70% of the total amount of Al^{3+} . The Q^2 units contain the smallest amount of Al^{3+} among the Q^4 , Q^3 , and Q^2 structural units. There is no evidence for temperature-dependent distribution of Al^{3+} among the coexisting structural units at least to 1100– 1200 °C.

The equilibrium constant for the speciation reaction, $2Q^3 \leftrightarrow Q^4 + Q^2$, passes through a maximum with increasing bulk melt Al/(Al + Si) at constant temperature. Its temperature-dependence also depends on bulk melt Al/(Al + Si) so that the enthalpy of the speciation reaction, ΔH , passes through a maximum with increasing bulk Al/(Al + Si). This ΔH ranges between 13 and 23 kJ/mol for bulk melt Al/(Al + Si) between 0 and 0.33. These composition-dependent maxima in the equilibrium constant (at constant temperature) and ΔH of the speciation reaction reflect the changes in Al/(Al + Si) of Q², Q³, and Q⁴ structural units with Al/(Al + Si) of the melt.