Alacranite, As₈S₉: structural study of the holotype and re-assignment of the original chemical formula

PAOLA BONAZZI,^{1,*} LUCA BINDI,^{1,2} VALENTINA POPOVA,³ GIOVANNI PRATESI,^{1,2} AND SILVIO MENCHETTI¹

¹Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, Firenze, Italy ²Museo di Storia Naturale, sez. di Mineralogia e Litologia, Università degli Studi di Firenze, via La Pira 4, Firenze, Italy ³Institute for Mineralogy, Urals Branch of RAS, Chelyabinsk district, Miass 456317, Russian Federation

ABSTRACT

Alacranite from the type locality (Uzon caldera, Kamchatka, Russian Federation) was submitted for structural analysis. A single crystal was selected and the following lattice parameters were determined: a = 9.942(4), b = 9.601(2), c = 9.178(3) Å, $\beta = 101.94(3)^\circ$, V = 857.1 (5) Å³. The crystal structure was solved in the *P2/c* space group using direct methods and refined to R = 6.79% for 472 observed reflections. The structure of alacranite consists of an ordered sequence of As₄S₄ and As₄S₅ cage-like molecules, with a molecular packing closely resembling that found in the β -As₄S₄ phase. Both As-As and As-S intramolecular distances are in the range usually observed for covalent bonds. The structural model confirms the chemical formula As₈S₉ for alacranite, and accounts for differences in the unit-cell parameters of alacranite compared to those of the natural analogue of β -As₄S₄. This latter mineral, therefore, should receive a new name.