High-pressure crystal structure of kosmochlor, NaCrSi₂O₆, and systematics of anisotropic compression in pyroxenes

MARCUS J. ORIGLIERI,^{1,*} ROBERT T. DOWNS,¹ RICHARD M. THOMPSON,¹ CAROLYN J.S. POMMIER,² M. BONNER DENTON,² AND GEORGE E. HARLOW³

¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. ²Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, U.S.A. ³Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York 10024-5192, U.S.A.

ABSTRACT

The crystal structure of synthetic kosmochlor, NaCrSi₂O₆, was studied using single crystal X-ray diffraction at high pressure. A four-pin diamond anvil cell, with 4:1 methanol:ethanol pressure medium, was used to achieve pressures to 9.28 GPa. Unit-cell data were collected at 20 pressures, and intensity data were collected at 13 of these pressures. Fitting the P-V data to a third-order Birch-Murnaghan equation yields $V_0 = 418.84(3)$ Å³, $K_0 = 134(1)$ GPa⁻¹, and $K'_0 = 2.0(3)$. Anisotropic compression was observed with unit strain axial ratios of 1:1.82:2.08. The CrO₆ octahedron has a bulk modulus $K_0 = 90(16)$ GPa⁻¹, while the SiO₄ tetrahedron has $K_0 = 313(55)$ GPa⁻¹, both with $K'_0 =$ 4. An o-type rotation of the O3-O3-O3 linkage was observed with pressure, with \angle O3-O3-O3 decreasing from 172.8(2)° to 166.1(7)°. Compression in kosmochlor is related to the stacking directions of distorted cubic closest packed O atom monolayers. Unit strain ellipsoids for diopside, hedenbergite, spodumene (C2/c and $P2_1/c$), LiScSi₂O₆ (C2/c and $P2_1/c$), clinoenstatite, orthoenstatite, and Mg₁₅₄Li₂₃Sc₂₃Si₂O₆ (*Pbcn* and *P*2₁*cn*) were generated and discussed in terms of closest packing systematics. A relationship between the anisotropy of compression of olivines and pyroxenes is established. A strategy to determine not only the direction of a stress field in deformed rocks, but also an estimate of the magnitude of stress is discussed in terms of comparing the anisotropy of olivine and pyroxene.