A model for the structure of the hydrated aluminum phosphate, kingite determined by ab initio powder diffraction methods

KIA S. WALLWORK,¹ ALLAN PRING,^{*,1,2,3} MAX R. TAYLOR,¹ AND BRETT A. HUNTER⁴

¹School of Chemistry, Physics and Earth Sciences, The Flinders University of South Australia, GPO Box 2100 Adelaide, South Australia 5001, Australia

²Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia ³Department of Geology and Geophysics, Adelaide University, North Terrace, Adelaide, South Australia 5000, Australia ⁴Neutron Scattering Group, ANSTO, PMB 1, Menai, New South Wales 2234, Australia

ABSTRACT

The crystal structure of kingite, Al₃(PO₄)₂(F,OH)₂·8(H₂O,OH), a secondary mineral from a Cambrian-Precambrian phosphate deposit at Tom's Quarry, near Kapunda, South Australia, has been determined from a powder sample using synchrotron X-ray diffraction data. The structure was determined ab initio by direct methods and refined to $R_{\text{Bragg}} = 0.022$ and $R_{wp} = 0.039$ using the Rietveld method. The triclinic structure was solved and refined in the space group $P\overline{1}$, a = 9.377(1), b = 10.113(1), c = 7.138(1) Å, $\alpha = 97.60(1)$, $\beta = 100.88(1)$, $\gamma = 96.01(1)^\circ$, V = 653.0(1) Å³, Z = 2. The structure of kingite contains finite strings of three corner sharing Al ϕ_6 octahedra (where ϕ represents O, OH⁻, F⁻, or H₂O). These strings are cross-linked via PO₄ tetrahedra to produce layers that are perpendicular to [100]. The layers are linked via hydrogen bonding through H₂O located in the interlayer space. Kingite is shown to have a different stoichiometry to that reported earlier. The relationship of kingite to the structures of wavellite, Al₃(PO₄)₂(OH)₃·5H₂O, and mitryaevaite, Al₅(PO₄)₂[(P,S)O₃(OH,O)]₂F₂(OH)₂(H₂O)₈·6.48H₂O, are briefly discussed.