Electronic structure of Fe-bearing lazulites

M. GRODZICKI,^{1,*} G.J. REDHAMMER,¹ G. AMTHAUER,¹ V. SCHÜNEMANN,² A.X. TRAUTWEIN,² B. VELICKOV,³ AND P. SCHMID-BEURMANN⁴

¹Institute of Mineralogy, University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria
²Institute of Physics, Medical University, Ratzeburger Allee 160, D-23536 Lübeck, Germany
³Institute of Applied Geosciences, TU-Berlin, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany
⁴Institute of Mineralogy and Petrography, University of Kiel, Ludewig-Meyn-Str. 10, D-24098 Kiel, Germany

ABSTRACT

The Fe end-members scorzalite $[Fe^{2+}Al_2^{3+}(PO_4)_2(OH)_2]$ and barbosalite $[Fe^{2+}Fe_2^{3+}(PO_4)_2(OH)_2]$ of the lazulite series have been investigated by Mössbauer and diffuse reflectance spectroscopy, and by electronic structure calculations in the local spin density approximation. The measured quadrupole splitting ($\Delta E_Q = -3.99 \text{ mm/s}$) in scorzalite is in quantitative agreement with the calculated value ($\Delta E_Q = -3.90 \text{ mm/s}$), as well as its temperature dependence. The optical spectrum of barbosalite can be resolved into three peaks at 8985 cm⁻¹, 10980 cm⁻¹, and 14110 cm⁻¹. These positions correlate well with the two calculated spin-allowed d-d transitions at 8824 cm⁻¹ and 11477 cm⁻¹, and with an intervalence charge transfer transition at about 14200 cm⁻¹. The calculated low-temperature magnetic structure of barbosalite is characterized by a strong antiferromagnetic coupling (J = -84.6cm⁻¹) within the octahedral Fe³⁺-chains, whereas a weak antiferromagnetic coupling within the trioctahedral subunit cannot be considered as conclusive. The analysis of the charge and spin densities reveals that more than 90% of the covalent part of the iron-ligand bonds arises from the Fe(4s,4p)electrons. Clusters of at least 95 atoms are required to reproduce the available experimental data with quantitative accuracy.