Thermodynamics and stability of pseudobrookite-type MgTi₂O₅ (karrooite)

DIMITRIOS XIROUCHAKIS,^{1,2,*} ALEXANDER SMIRNOV,³ KELLY WOODY,³ DONALD H. LINDSLEY,³ AND DAVID J. ANDERSEN⁴

¹Office of Astromaterials Research and Exploration Science, NASA JSC, Mail Code SA13, Houston, Texas 77058, U.S.A.

²Department of Chemistry, Texas Southern University, 3100 Cleburne Avenue, Houston, Texas 77004, U.S.A.

³Department of Geosciences and Center for High Pressure Research, State University of New York at Stony Brook, Stony Brook, New York

11794-2100, U.S.A.

⁴MDProductivity, 12710 Research Blvd., Ste. 205, Austin, Texas 78759, U.S.A.

ABSTRACT

Pseudobrookite-type MgTi₂O₅ (karrooite) is a synthetic crystalline phase with the *Bbmm* structure and a component in orthorhombic oxide solid solutions, $R^{2+}Ti_2O_5-R_2^{3+}TiO_5$, which are present as accessory minerals in lunar and terrestrial rocks. In this study, we present a model for the molar Gibbs free energy of MgTi₂O₅ as a function of T, P, and the order parameter $s = X_{Me}^{Me} - 2X_{Me}^{Me}$, $(-1 \le 1)$ $s \le 1$). We describe the molar Gibbs free energy, (\overline{G}) , with the equation: $\overline{G} = \overline{g}_0 + \overline{g}_1 \cdot (1-s) + 3/2$ $\overline{g}_2(1-s^2) - T \cdot \overline{S}_{\text{config}}$, and take parameter g_0 to represent the molar Gibbs free energy of ordered MgTi₂O₅ (s = 1), whereas parameters g_1 and g_2 may represent cation-disorder contributions. We used powder and single-crystal X-ray diffraction, and high-temperature relative enthalpy data, to calibrate the disorder contribution to the volume ($b_0 = 7.3822 \cdot 10^{-3}$ J/bar), and the model parameters g_1 (7370.8 J/mol) and g_2 (3576.1 J/mol), and heat capacity and volume equation coefficients. We also optimized standard state thermodynamic data from the elements for ordered MgTi₂O₅, ($\Delta H^0 = -$ 2 498 515.28 J/mol, $S^0 = 149.55$ J/(mol·K), $\Delta G^0 = -2$ 362 181.72 J/mol, $V^0 = 5.445$ J/bar) consistent with the model parameters and equations, the thermodynamic data in OUILF, and phase-equilibrium experiments involving MgTi₂O₅, geikelite, rutile, orthoenstatite, and forsterite in the range 973 to 1673 K and 0.0001 to 2.0 GPa. Finally, we investigate theoretically the stability of MgTi₂O₅ (karrooite) with respect to geikelite, rutile, diopside, enstatite, and forsterite in the CaO-MgO-TiO₂-SiO₂ system. We find that diopside- and titanite-bearing reactions require extremely high temperatures, and are thus not stable with respect to liquid. The inferred phase relations can be of help in understanding the stability of MgTi₂O₅ with respect to rutile, geikelite, forsterite, and orthoenstatite, and by extrapolation that of armalcolite relative to rutile, ilmenite, olivine, and orthopyroxene in terrestrial mantle rocks and high-Ti lunar basalts.