The high-temperature $P2_1/c-C2/c$ phase transition in Fe-free pyroxene (Ca_{0.15}Mg_{1.85}Si₂O₆): Structural and thermodynamic behavior

MARIO TRIBAUDINO,^{1,*} FABRIZIO NESTOLA,¹ FERNANDO CÁMARA,² AND MARIA CHIARA DOMENEGHETTI³

¹Dipartimento di Scienze Mineralogiche e Petrologiche, Via Valperga Caluso 35, I-10125 Torino, Italy ²CNR-Centro di Studio per la Cristallochimica e la Cristallografia, Via Ferrata 1, 27100 Pavia, Italy ³Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

ABSTRACT

A high-temperature in situ single-crystal X-ray diffraction study was performed from room *T* to 1150 °C on two crystals of Fe-free $P_{2_1/c}$ clinopyroxenes of composition $Ca_{0.15}Mg_{1.85}Si_2O_6$ [cell parameters at room *T*: a = 9.651(2) Å, b = 8.846(2) Å, c = 5.202(1) Å, $\beta = 108.38(2)^\circ$, V = 421.4 (2) Å³] synthesized by isothermal annealing for 624 h at T = 1370 °C, P = 1 atm. A first order $P_{2_1/c}$ -C2/*c* phase transition was found slightly below 1000 °C [$T_c = 926(39)$ °C]. The transition was revealed by discontinuous changes in intensities and cell parameters. Prolonged heating at high temperature induced a non-reversible increase in the transition temperature up to more than 1150 °C, without apparent changes in the order of the phase transition. Coupling with strain due to incipient exsolution in a formerly almost defect-free sample is suggested to be responsible for increase in T_c . TEM observations of a sample from the same starting material after further annealing for 72 h at T = 1050 °C, P = 1 atm are consistent with the proposed incipient exsolution model. Annealing was found to induce the formation of a mottled texture oriented parallel to (101).

Results from structure refinement of data collected below the transition at T = 25,500,650,800, and 1000 °C showed only minor changes in the chain configurations, which are highly differentiated up to 1000 °C, confirming the strong first-order character of the transition.