American Mineralogist, Volume 87, pages 1005–1008, 2002

The strength of moissanite

JIANZHONG ZHANG,^{1,*} LIPING WANG,¹ DONALD J. WEIDNER,¹ TAKEYUKI UCHIDA,² AND JI-AN XU³

¹ Center for High-Pressure Research and Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York 11794, U.S.A.

² Consortium for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, U.S.A.

³ The Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, N.W., Washington, D.C. 20015, U.S.A.

ABSTRACT

The yield strength of moissanite was investigated at pressures up to 18.3 GPa and temperatures up to 1200 °C by analyzing the peak shapes of diffraction lines from a powder sample. At room temperature, the moissanite crystal behaves elastically with increasing pressure up to 13.7 GPa. At higher pressures applied, the sample is yielded; the yield strength of moissanite is determined to be 13.6 GPa. Upon heating at 18.3 GPa, significant stress relaxation is observed at temperatures above 400 °C, and the yield strength of moissanite decreases rapidly from 12.8 GPa at 400 °C to 4.2 GPa at 1200 °C. Such behavior will place severe limitations on the use of moissanite as an anvil material when external heating is desired for high pressure and temperature experiments.