Co-existing aluminum silicates in quartz veins: A quantitative approach for determining andalusite-sillimanite equilibrium in natural samples using oxygen isotopes

AARON J. CAVOSIE,* ZACHARY D. SHARP, AND J. SELVERSTONE

University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.

ABSTRACT

Massive quartz veins with large andalusite and sillimanite crystals in textural equilibrium were found in a Proterozoic province in the northern Colorado Front Range. The δ^{18} O values of the andalusite and sillimanite are identical, supporting the idea that these aluminum-silicate (AS) polymorphs crystallized at the same time. These data are consistent with the findings of Sharp (1995), who reported no fractionation associated with polymorphism of the aluminum silicates. Quartz–aluminum-silicate fractionations from veins in textural equilibrium and disequilibrium are 2.63–2.93 and 2.20–2.25‰, respectively. Temperature estimates from quartz–aluminum-silicate oxygen isotope fractionations range from 603–652 °C for equilibrium veins, and geologically unreasonable temperatures of 728–788 °C from veins in textural disequilibrium. Formation temperatures determined from isotope thermometry constrain the location of the veins on the andalusite = sillimanite univariant curve, thus defining a pressure range of 1.2–2.6 kbar for vein formation. The vein *P-T* estimates from this study agree well with previous host rock *P-T* estimates from nearby localities and, in conjunction with available Ar thermochronology, indicate that the veins likely formed during a Mesoproterozoic magmatic event in the Colorado Front Range.