Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses

P.L. KING,^{1,*} T.W. VENNEMANN,² J.R. HOLLOWAY,^{1,3} R.L. HERVIG,^{1,4} J.B. LOWENSTERN,⁵ AND J.F. FORNERIS¹

¹Geology Department, Arizona State University, Tempe, Arizona 85287, U.S.A.
²Institut Geochemie, Wilhelmstr. 56, D-72076, Tübingen, Germany
³Chemistry Department, Arizona State University, Tempe, Arizona 85287, U.S.A.
⁴Center for Solid State Science, Arizona State University, Tempe, Arizona 85287, U.S.A.
⁵U.S. Geological Survey, MS 910, 345 Middlefield Road, Menlo Park, California 94025, U.S.A.

ABSTRACT

Small-scale analyses of volatiles in minerals and glasses provide information on how volatiles influence high-temperature geologic processes and low-temperature alteration processes. Four techniques for determining the C-O-H volatile contents of andesitic glasses are compared: manometry, secondary ion mass spectrometry, micro-Fourier transform infrared spectroscopy, and a technique where the H₂O content is calculated using the difference between electron microprobe analysis totals and 100% sum. We present a method to determine the H content of a wide range of glass and mineral compositions using secondary ion mass spectrometry and a model for calibration factors. The extinction coefficients for H-O volatile contents in intermediate composition synthetic glasses are determined, and it is demonstrated that C-O speciation changes as total H₂O content increases, with molecular CO_2 decreasing, CO_2^{3-} increasing, and carbonate peak splitting increasing. For glasses with low H₂O content and oxy-substituted minerals, the methods of choice for volatile analysis are secondary ion mass spectrometry or micro-Fourier transform infrared spectroscopy.