Origin and structural character of haüyne_{ss} in spinel dunite xenoliths from La Palma, Canary Islands

ERIK WULFF-PEDERSEN,^{1,*} ELSE-RAGNHILD NEUMANN,^{2,†} ERNST A.J. BURKE,³ RICCARDO VANNUCCI,⁴ PIERO BOTTAZZI,⁴ LUISA OTTOLINI,⁴ JON GJØNNES,⁵ AND VIDAR HANSEN⁵

¹Mineralogical-Geological Museum, University of Oslo, Sarsgaten 1, N-0562 Oslo, Norway
²Department of Geology, P.O. Box 1047 Blindern, N-0316 Oslo, Norway
³Faculty of Earth Sciences, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
⁴CNR-Centro di Studio per la Cristallochimica e la Cristallografia, via Bassi 4, I-27100 Pavia, Italy
⁵Center of Material Science, Forskningsparken, Gaustadalleen 21, N-0371 Oslo, Norway

ABSTRACT

Two spinel dunite xenoliths (Fo_{89.8-91.2} in olivine) from La Palma contain minor amounts (<1%) of a pale-blue sodalite-group mineral with haüyne/lazurite chemistry. Selected-area electron diffraction (SAED) patterns of this phase indicate a cubic unit cell with dimensions 9.12 \pm 0.02 Å, and space group *P*43*n*. Superstructure spots along three <110> directions are common, implying commensurate or incommensurate modulations along <110> directions. Raman spectra show peaks typical of both lazurite and haüyne. It is concluded that the mineral has a structure intermediate between those of pure lazurite and pure haüyne, and it is here referred to as haüyne_{ss}. The haüyne_{ss} occurs together with strongly nepheline-normative glass in thin veinlets (<0.1 mm), in interstitial glass pockets, and as inclusions in olivine porphyroclasts. To our knowledge lazurite or haüyne has not previously been described in mantle rocks. The haüyne_{ss} is strongly depleted in REE and most other highly lithophile elements relative to the coexisting glass, whereas D_{mineral/glass} for Sr is ≈1.0, and D_{Eu} higher than the other REE. The haüyne_{ss} crystallized from a melt now present as phonolitic glass, probably in response to rapidly decreasing pressure during transport of the xenoliths to the surface. The coexistence of haüyne_{ss} and FeS-rich sulfide globules in some samples suggests slightly more oxidizing conditions than for samples in which the glass contains sulfide globules alone.