Tumchaite Na₂(Zr,Sn)Si₄O₁₁·2H₂O—A new mineral from carbonatites of the Vuoriyarvi alkali-ultrabasic massif, Murmansk Region, Russia

VICTOR V. SUBBOTIN,^{1,*} STEFANO MERLINO,² DMITRY YU. PUSHCHAROVSKY,³ YAKOV A. PAKHOMOVSKY,¹ ORAZIO FERRO,² ALLA N. BOGDANOVA,¹ ANATOLY V. VOLOSHIN,¹ NATALIA V. SOROKHTINA,¹ AND NATALIA V. ZUBKOVA³

¹Geological Institute, Kola Science Centre of the Russian Academy of Sciences, Fersman Street 14, 184200 Apatity, Russia ²Department of Earth Sciences, University of Pisa, Via S. Maria 53, I-56126 Pisa, Italy ³Department of Crystallography, Geological Faculty, Moscow State University, 119899 Moscow, Russia

ABSTRACT

Tumchaite, Na₂(Zr,Sn)Si₄O₁₁·2H₂O, is a new species from the Vuorivarvi alkali-ultrabasic massif, Murmansk Region, Russia, where it occurs as colorless to white tabular monoclinic crystals associated with calcite, dolomite, a mineral of the serpentine group and pyrite in the late dolomitecalcite carbonatites. It is transparent to translucent; with vitreous luster; and perfect cleavage on (100). Mohs hardness is 4.5, D_{meas} is 2.78 (2) g/cm³. Tumchaite is optically biaxial (-), with $\alpha = 1.570$ (2), $\beta = 1.588$ (2), $\gamma = 1.594$ (2), $2V_{\text{meas}} = 60$ (5)°, and elongation positive, $Y = b, c \land Z = 3^\circ$. Pleochroism exists, with Y = Z = colorless, X = greenish-gray. Electron microprobe analysis gave (wt%): Na₂O 13.72, CaO 0.15, SiO₂ 52.71, TiO₂ 0.35, ZrO₂ 20.41, SnO₂ 5.73, HfO₂ 0.60, H₂O (computed assuming 2H₂O pfu.) 7.86, total 101.53. The X-ray study pointed to space group $P2_1/c$, a = 9.144 (4), b = 8.818 (3), c = 7.537 (3) Å, $\beta = 113.22$ (3)°, V = 558.49 Å³, Z = 2. The strongest lines of the powder diffraction pattern [d in Å (I) (hkl)] are: 8.40 (10) (100), 5.38 (9) (11 $\overline{1}$), 4.00 (8) (111), 3.401 (9) $(20\overline{2})$, 2.902 (9) (211), 2.691 (9) (13 $\overline{1}$). The crystal structure of tumchaite was refined to R =0.043 for 865 $F_0 > 4\sigma(F_0)$. The mineral is isotypic with penkvilksite-1*M*. The structure is characterized by silicate sheets parallel (100), formed by alternating clockwise- and counterclockwise-growing spiral chains of corner-sharing SiO_4 tetrahedra. The sheets are connected by octahedra occupied by (Zr, Sn) at 0, 1/2, 0. The Zr/Sn ratio in the octahedra is 4. Water molecules and Na cations are placed in the cavities of the polyhedral framework. The ideal crystal-chemical formula is Na₂ $(Zr_0 Sn_0)$ [Si₄O₁₁]·2H₂O. The mineral is named tumchaite for the river Tumcha near Vuoriyarvi massif.