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INTRODUCTION

During the Cenozoic, eastern Australia experienced wide-
spread volcanic activity. An important part of this activity was
the construction of chains of compound volcanoes made of
basalts and hawaiites, lesser amounts of intermediate rocks,
and a variety of felsic extrusives and subvolcanic intrusives.
Radiometric dating shows that these volcanoes and their coun-
terparts in the adjoining Tasman Sea display a progressive de-
crease in age from north to south. It is probable that the
magmatic event responsible for the construction of these vol-
canoes was triggered by a static, long-lasting, mantle plume
that impinged on the base of the Australian Plate as it moved
northwards away from Antarctica (Wellman and McDougall
1974; Johnson et al. 1989).

The well-preserved Warrumbungle Volcano is located in
northern New South Wales (Fig. 1). It has a low-angle shield
form, surmounted by a complex centralized system of domes,
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cryptodomes, dikes, and plugs that intrude into, or protrude
through, a variety of lava flows and pyroclastic deposits. The
felsic rocks usually crop out in the central zone whereas the
less-differentiated rocks are more abundant in the distal zone.
Figure 2 shows that these rocks belong to the midalkaline suite,
and range from basalt via intermediate types to various tra-
chytes and rhyolites. On an (Na2O + K2O) vs. SiO2 diagram
(Fig. 2), midalkaline rocks occupy the transitional field between
the compositional fields of common subalkaline rocks and rare
alkaline rocks (Middlemost 1997; p. 216).

Examination of the incompatible-trace-element geochem-
istry of the most-primitive basic rocks having high Mg' [Mg' =
Mg/(Mg + Fe2+); ferric iron is calculated after Middlemost
(1989)] values and few phenocrysts reveals that they comprise
two discrete magmatic series, referred to as the incompatible-
trace-element-rich (ITER) and the incompatible-trace-element-
poor (ITEP) series, respectively (Figs. 3 and 4). The
trace-element patterns of the ITER series are smooth with Nb-
Ta enrichments (ocean island basalt signature), whereas the
patterns of the ITEP series are more differentiated with depleted
K and Rb values, and lower LREE/HREE ratios (Fig. 4). Fur-
thermore, on Mg' vs. incompatible element diagrams (e.g., Zr,
Rb, K; Fig. 3), the two series display contrasting variation
trends: a positive correlation for the ITER and a negative cor-
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