American Mineralogist, Volume 85, pages 765-769, 2000

In-situ high pressure X-ray diffraction of phase E to 15 GPa

SEAN R. SHIEH,* HO-KWANG MAO, JÜRGEN KONZETT, AND RUSSELL J. HEMLEY

Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road, N.W., Washington, D.C. 20015, U.S.A.

ABSTRACT

In-situ high pressure X-ray diffraction of phase E (free of secondary phases) measured up to 14.5 GPa shows that phase E is stable over this pressure range at room temperature. The pressure dependence of the lattice parameters are $a = 2.967 - 0.011P + 0.0001P^2$ and $c = 13.886 - 0.054P + 0.001P^2$ (*P* is in GPa). A least-squares fit to third-order of Eulerian strain theory yields a bulk modulus K_{T0} for phase E of 93 (±4) GPa and pressure derivative K'_{T0} of 5 (±1). The bulk modulus obtained by this study is about 10% lower than that obtained by Brillouin scattering. Phase E appears to have the lowest bulk modulus among DMHS. The OH stretching frequency of 3613 cm⁻¹ indicates weak, if any, hydrogen bonding. The associated O-O distance of phase E is estimated to be 3.00–3.10 Å.