High-pressure crystal chemistry of Fe^{3+} -wadsleyite, β - $Fe_{2.33}Si_{0.67}O_4$

ROBERT M. HAZEN,* HEXIONG YANG, AND CHARLES T. PREWITT

Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road, N.W., Washington, D.C. 20015-1305, U.S.A.

ABSTRACT

The crystal structure of Fe³⁺-wadsleyite, $(Fe_{1,67}^{2+}Fe_{0,33}^{++})(Fe_{0,33}^{3+}Si_{0,67})O_4$, was determined by singlecrystal X-ray techniques at six pressures to 8.95 GPa. The isothermal bulk modulus is $K_{70} = 173(3)$ GPa $[K_{70} = \partial K_T / \partial P = 5.2(9)]$, which is identical within error to bulk moduli observed for normal wadsleyites $[\beta-(Mg,Fe)_2SiO_4]$. Compression of Fe³⁺-wadsleyite is significantly more isotropic than for $\beta-(Mg,Fe)_2SiO_4$ because Fe³⁺ substitutes into both Si⁴⁺ tetrahedral sites and (Mg,Fe²⁺) octahedral sites. Ferric iron thus reduces the contrast between tetrahedral and octahedral compressibilities, which in turn reduces the compressional anisotropy. Bond distance analysis and octahedral compressibilities of the three symmetrically distinct octahedral sites reveal that Fe³⁺ orders preferentially into M1 and M3, while M2 occupancy is close to pure Fe²⁺.