Crystal chemistry of the new mineral brandholzite, $Mg(H_2O)_6[Sb(OH)_6]_2$, and of the synthetic analogues $M^{2+}(H_2O)_6[Sb(OH)_6]_2$ ($M^{2+}=Mg$, Co)

ALEXANDRA FRIEDRICH,^{1,*} MANFRED WILDNER,^{1,†} EKKEHART TILLMANNS,¹ AND PETER L. MERZ²

¹Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria ²Institut für Mineralogie und Kristallstrukturlehre, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

ABSTRACT

Brandholzite, a new magnesium antimony hydroxide hydrate mineral, Mg(H₂O)₆[Sb(OH)₆]₂, has been discovered in Au-Sb-Quartz veins of the former mining district of Brandholz-Goldkronach, Fichtelgebirge, Germany. The new mineral is associated with stibnite and antimony-ochers and forms colorless, platelike crystals up to ~1 mm in size. Natural as well as synthetic samples obtained by slow evaporation of an aqueous solution exhibit $\{1010\}$ twinning, leading to a pronounced $\overline{31m}$ pseudo-symmetry. The crystal structures of brandholzite and its synthetic analogue were investigated using single crystal X-ray CCD data: trigonal, space group P3, Z = 6, a = 16.119(1) Å, c = 9.868(1) Å, R1 = 0.034 for 14788 $F_0 > 4\sigma(F_0)$ (brandholzite), and a = 16.113(1) Å, c = 9.868(1)Å, R1 = 0.029 for 16624 $F_0 > 4\sigma(F_0)$ (synthetic analogue) and 525 variable parameters each. The structures are isotypic with bottinoite, $Ni(H_2O)_6[Sb(OH)_6]_2$, and are built up by nearly regularly shaped, isolated $Mg(H_2O)_6$ and $Sb(OH)_6$ octahedra which are interconnected by hydrogen bonds only. The strongest lines in the powder pattern are [d-value (Å), I, hkl]: 4.636, 100, (300); 3.392, 70, (302); 4.946, 50, (002); 2.356, 40, (332). At 589 nm, the mineral is optically uniaxial negative with refractive indices $n_{\omega} = 1.570(2)$ and $n_{\varepsilon} = 1.569(2)$. The crystal structure of the pseudo-isotypic synthetic compound $C_0(H_2O)_6[Sb(OH)_6]_2$ was also investigated: trigonal, space group P3, a = 16.105(1), c = 9.851(1), Z = 6, R1 = 0.051 for 13516 reflections with $F_0 > 4\sigma(F_0)$ and 525 parameters. Compared to the Mg-antimonates and bottinoite, a significant rotation of some Sb(OH)₆ octahedra is observed in $Co(H_2O)_6[Sb(OH)_6]_2$.