Quetzalcoatlite: A new octahedral-tetrahedral structure from a $2 \times 2 \times 40 \ \mu m^3$ crystal at the Advanced Photon Source-GSE-CARS Facility

PETER C. BURNS,^{1,*} JOSEPH J. PLUTH,^{2,3,4} JOSEPH V. SMITH,^{2,3} PETER ENG,³ IAN STEELE,^{2,3} AND ROBERT M. HOUSLEY⁵

¹Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0767, U.S.A.
²Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
³Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, U.S.A.
⁴Materials Research Science and Engineering Center, University of Chicago, Chicago, Illinois 60637, U.S.A.
⁵Condenced Matter Physics, California Institute of Technology, Pasadena, California 91125, U.S.A.

ABSTRACT

The structure of quetzalcoatlite, $Zn_6Cu_3(TeO_3)_2O_6(OH)_6(Ag_xPb_y)Cl_{x+2y}$, $x + y \le 2$, Z = 1, was solved and refined using data collected at the Advanced Photon Source-GSE-CARS facility, using a 2 × 2 × 40 µm³ single crystal. The structure is trigonal, space group $P\overline{3}1m$, a = 10.145(1), c = 4.9925(9) Å, V = 445.0(1) Å³, and was refined to R = 5.1 for 395 unique observed reflections. Te⁶⁺O₆ octahedra and Jahn-Teller distorted Cu²⁺O₄(OH)₂ octahedra share edges to form layers parallel to (001), and ZnO₂(OH)₂ tetrahedra share vertices to form six-member rings parallel to (001). Layers of octahedra and tetrahedra alternate along c, and form a new framework structure by vertex sharing. Channels through the framework parallel to c are occupied by Ag, Pb, and Cl ions. Electron microprobe analysis revealed Ag and Cl overlooked in the original microchemical analysis. Up to one-third of the Ag was substituted by Pb, and a Pb-rich analog may exist.