American Mineralogist, Volume 85, pages 1087–1091, 2000

LETTERS

Computer simulation of high-temperature, forsterite-melt partitioning

JOHN A. PURTON,^{1,2,*} JON D. BLUNDY,¹ AND NEIL L. ALLAN^{2,†}

¹ CETSEI, Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, U.K. ² School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, U.K.

ABSTRACT

We report the first atomistic computer simulations of the partitioning of divalent cations between forsterite (Mg₂SiO₄) and coexisting MgSiO₃ melt at ~1600 °C and atmospheric pressure. Our results, using new Monte Carlo techniques, are compared with new experimental determinations of forsterite-melt partitioning for the same elements (Ca, Mn, Ni, Co, Cu, Zn, Sr, Cd, Ba) in the same system under identical conditions. Over seven orders-of-magnitude variation in the Nernst partition coefficient (*D*), experiment and simulation agree typically within a factor of 2 and at worst to within a factor of 4.2 (D_{Sr}). Our simulation techniques therefore herald a novel means of determining crystal-melt partitioning that may be especially valuable under extreme conditions of pressure and temperature not readily amenable to experimentation.