Rietveld analysis of dicalcium aluminate (Ca₂Al₂O₅)—A new high pressure phase with the Brownmillerite-type structure

VOLKER KAHLENBERG,¹ REINHARD X. FISCHER,¹ AND CLIFF S.J. SHAW²

¹Fachbereich Geowissenschaften (Kristallographie), Universität Bremen, Klagenfurter Strasse, D-28359 Bremen, Germany ²Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

Dicalcium aluminate (Ca₂Al₂O₅) was prepared in a piston cylinder apparatus at 1250 °C and 2.5 GPa. The compound is orthorhombic with space group symmetry /2mb, a = 5.2281(1) Å, b = 14.4686(2) Å, c = 5.4004(1) Å (Z = 4, $D_{calc} = 3.481$ g/cm³), and belongs to the brownmillerite structure family. Main building units are (1) layers of perovskite type corner connected AlO₆-octahedra perpendicular to [010], and (2) zweier single chains of AlO₄-tetrahedra running parallel [100]. The alternate stacking of the layers and sheets of single chains results in a three dimensional network in which the calcium ions are incorporated for charge compensation. The present structure is the first example for an alkaline earth aluminate with zweier single chains of tetrahedra.