American Mineralogist, Volume 85, pages 1009–1021, 2000

Boron *K*-edge XANES of borate and borosilicate minerals

MICHAEL E. FLEET AND SWAMINATHAN MUTHUPARI

Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada

ABSTRACT

Synchrotron radiation B K-edge XANES spectra are reported for 19 borate and borosilicate minerals. The spectra are characterized by three prominent features; a sharp peak (A) at ~194 eV (the edge feature of trigonal B; ^{III}B), a broader peak (B) at 197–199 eV (the edge feature of tetrahedral B, ^{IV}B), and a broad peak (C) at 200–201 eV for tetrahedral B and 203–204 eV for trigonal B. The area of peak A is very sensitive to content of ^{III}B and its position yields information on B-O bond length and linkage of the BO₃ group. The area of peak B is proportional to content of ^{IV}B but quantification is limited by overlap with peak C. The width of peak B increases with increasing divergence of B-O bond lengths, responding to splitting of $\sigma^*(t_2)$ antibonding orbitals. The tetrahedral component of peak C appears to be a σ -shape resonance. For trigonal B minerals, the relative intensity of peak C and its satellite peaks increases with increase in mean size and/or atomic number of next-nearestneighbor cations, C being most intense in vonsenite (Fe₂Fe³⁺BO₅). Priceite (Ca₄B₁₀O₁₉·7H₂O), of unknown structure, has 80% ^{IV}B, and an isolated BX₃ group with ^{III}B-O = 1.373(5) Å. Comparison of B K-edge XANES spectra collected using total electron yield (sampling depth <60 Å) and fluorescence yield (sampling depth <1100 Å) shows that borates and borosilicates readily reconstruct in surface and near-surface environments. More profound structural damage involving conversion of ^{IV}B to ^{III}B occurs in minerals with high contents of ^{IV}B, and hydrous Mg borates with interstitial H_2O are unstable in the high vacuum of the spectrometer.